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1. INTRODUCTION

Quantum mechanics has provided chemistry with two general
theories of bonding: valence bond (VB) theory and molecular
orbital (MO) theory. The two theories were developed at about
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the same time, but quickly diverged into two schools that have
competed on charting the mental map of chemistry. Until the
mid-1950s, chemistry was dominated by classical VB theory,
which expresses the molecular wave function as a combination of
explicit covalent and ionic structures based on pure atomic
orbitals (AOs) or hybrid atomic orbitals (HAOs), as illustrated
in Scheme 1a. However, the computational effort required to per-
form ab initio calculations in the classical VB framework proved
to be overly demanding, and as such, the theory was employed in
an oversimplied manner, neglecting ionic structures and using
nonoptimized orbitals. At the same time when this early ab initio
VB theory was lacking accuracy and did not progress, MO theory
was enjoying efficient implementations, which have provided
the chemical community with computational software of ever-
increasing speeds and capabilities. VB theory was unable to come
up with equally popular and useful software, and as such it has
gradually fallen into disrepute and was almost completely aban-
doned. Thus, MO theory took over.

However, from the 1980s onward, VB theory started making a
strong comeback and has since enjoyed a renaissance, including
the ab initio method development of the theory. A common
feature of all modern VB methods is the simultaneous optimiza-
tion of the orbitals and the coefficients of the VB structures,
which thereby lead to an improved accuracy. However, the
various modern VB methods differ in the manners by which the
VB orbitals are defined.

The modern era began when one of the pioneers of ab initio
VB theory, Goddard, and his co-workers developed the general-
ized VB (GVB) method,1�5 which employed semilocalized
atomic orbitals (having small delocalization tails as in Scheme 1b)
used originally by Coulson and Fischer for theH2molecule.6 The
GVB theory does not incorporate covalent and ionic structures
explicitly, but instead uses formally covalent structures based on
semilocalized orbitals, which implicitly incorporate the contribu-
tions of ionic structures to bonding (see Scheme 1b). This
enables a drastic reduction of the number of VB structures; for
example, the π-system of benzene requires a total number of 175
covalent and ionic VB structures based on pure AOs compared
with only five formally covalent Kekul�e and Dewar structures
based on semilocalized orbitals. It is noted that the GVB method
as implemented by Goddard is completely equivalent to a
strongly orthogonal geminal anzatz with two orbitals per pair.
Further progress was made after the initial development of the
method, when theGVBwave functionswere used as starting points
for further configuration interaction (CI)7,8 or perturbative treat-
ments of electron correlation.9�12 The method was applied,
among others, to the electronic structure of 1,3-dipoles,13�15

resonance in the allyl radical16 or cyclobutadiene,17 dissocia-
tion energies,7 halogen exchange reactions,18 organometallic
complexes,19�22 and so on.

In a philosophy similar to that of GVB, Gerratt, Raimondi, and
Cooper developed their VB method known as the spin-coupled
(SC) theory23�31 and its CI-augmented version, the so-called
SCVB.26,32�35 Like GVB, SC/SCVB theory relies on semiloca-
lized orbitals and includes formally covalent configurations only.
The difference between SC and GVB methods is that the former
releases the orthogonality and perfect-pairing restrictions, which
are usually used in GVB applications. Thus, in SC all orbitals are
allowed to be nonorthogonal, and all possible spin couplings
between the singly occupied orbitals are included in the wave
function. The SC and SCVBmethods were applied to aromatic and
antiaromatic molecules,35�41 the allyl radical,42 Diels�Alder and
retro-Diels�Alder reactions,43,44 sigmatropic rearrangements,45�47

1,3-dipolar cycloadditions,48�50 and so on.
Another VB method that was developed also starting in

the 1980s is a semiempirical method based on the Heisenberg
Hamiltonian (HH) and AO determinants rather than spin-
adapted VB structures. Initially, the method used semiempirical
parameters and a zero-differential overlap approximation andwas
applied to the ground and excited states of hydrocarbons51�57

and metal clusters.58 A nonempirical geometry-dependent ver-
sion was subsequently derived in which the parameters were
extracted from accurate ab initio calculations on simple mole-
cules.59,60 The latter calculations use orthogonalized AOs, which
consequently possess significant delocalization tails, but result in
computer-time savings. The method has been applied to ground
and excited states of conjugated hydrocarbons,59�61 heteroatomic
conjugated systems,62 polyynes,63,64 and so on. Eventually this ab
initio-parametrized method led to the molecular mechanics/
valence bond (MM/VB) method of Robb and Bearpark,65�73

which was extensively used for demonstrating conical intersec-
tions in photochemical reactions.70,71,74�76

Since VB theory is well-known for its deep chemical insight,
many methods have sprung to extract VB information fromMO-
based methods. Some of these methods involve mapping of MO-
and CI-augmented wave functions into valence bond structures
and can be dated to the pioneering studies of Slater and van Vleck
and later to Moffitt in his treatment of electronic spectra for large
molecules.77 The first practical implementation of Hartree�
Fock (HF) and post-HF wave functions was made by Hiberty
and Leforestier,78 who created such a “VB transcriptor” in 1978
and treated many molecules by showing the VB content of
their MO and MO�CI wave functions. Since then, the problem
has been explored by others, for example, by Karafiloglou,79

Bachler,80,81 Malrieu,82�84 and so on. Some important develop-
ments along these lines were made by Cooper et al.,85�87 who
computed a wave function of the SC type by projecting CASSCF
wave functions onto VB structures usingmaximum overlap criteria.
There are also various methods of VB readings of CASSCF wave
functions through orbital localization techniques80,81,83,84,88�92

and through wave function transformation using nonorthogonal
orbitals.89,93

Concurrently to the developments of all the above methods,
the progress that has occurred in computer technology and in
computational methodologies has enabled the re-emergence of
modern forms of classical VB in which both orbitals and the struc-
tural coefficients are simultaneously optimized. The advantage of
these modern classical VB methods over other brands of VB
theory is two-fold: (i) owing to the strictly local characters of the
employed orbitals (either purely atomic or purely localized on
fragments as in Scheme 1a above), the VB structures are very
clearly interpreted and as close as possible to the intuitive Lewis

Scheme 1. VB Wave Functions for a Two-Electron Bond
between Atoms A and B
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structures that constitute the language of chemists; (ii) because the
covalent and ionic structures are explicitly considered, it is possible to
meaningfully calculate their weights or their quasi-variational en-
ergies. As such, classical VB allows the VB structures to be clearly and
accurately defined, which, as will be seen, is important for calculation
of resonance energies, for diagrams in chemical reactivity, for in-
depth study of the nature of chemical bonds, and so on.

The resurgence of modern classical VB theory involves the
development of several methodological advances which allowed
new and more accurate applications of the theory.94�112 Thus,
several significant advances have been achieved in overcoming the
notorious “N! problem”, associated with the nonorthogonality in
the VBmethod, and direct algorithms have considerably increased
the speed of VB computations, which are nowadays much faster
than they used to be in the past. During this effort to speed up VB
calculations, there have emerged VB methods that also enable
quantitative accuracy to be achieved. Thus, dynamic correlation
has been incorporated into VB calculations, so that, at present,
sophisticated VBmethods are able to achieve the accuracy of high-
level post-HF methods. Very recently, classical VB theory was
extended to handle species and reactions in solution and is also
capable of treating transition-metal complexes.

Indeed the VB culture is broad and involves a variety of
techniques and approaches, and a review of all the methods
would be vast and too diffuse compared with a more focused
review that may benefit the general reader. Thus, since
methods that use semilocalized orbitals such as GVB, SCVB,
HH, and MM/VB have already been amply reviewed
before,1�4,23�31,53�56,69�71 we shall not review these meth-
ods again, and the reader is advised to consult the existing
authoritative sources. The present review will focus on those
modern VB methods that are based on classical VB theory,
which, we recall, deals with purely localized orbitals and
explicit consideration of covalent and ionic structures. The
combination of the lucid insight of VB into chemistry and the
new computational methods is discussed in this review,
hopefully establishing a case for the return of VB theory to
the classroom and to the laboratory bench in the service of
experimental chemists.

1.1. Family of Classical Valence Bond Methods
In all the methods of the classical VB type to be described

herein, one uses an active shell, which involves the electrons
that participate in the electronic reorganization in a process,
which can be bond making/breaking or a reaction such as SN2,
Diels�Alder, and so on. These electrons are then distributed in
the valence atomic orbitals or HAOs to generate all the possible
covalent and ionic structures. Scheme 2 shows this set of
structures for a hydrogen abstraction process; there are two

covalent and six ionic structures which distribute the three
“active electrons” in the three HAOs of the X---H---X0 system.
The wave function is a linear combination of such a structure set
and is optimized with respect to both the structural coefficients
and theHAOs. Themethods differ from each other by the levels
in which the dynamic correlation energy is incorporated into
the calculations. The relationships among the various methods
follow a philosophy similar to the one used in ab initio MO-
based theory.

The tree of these VBmethods is shown in Scheme 3. The basic
method, which was devised by Balint-Kurti and van Lenthe,94,95

is called the valence bond self-consistent field (VBSCF) method.
The method optimizes VB orbitals and structural coefficients
simultaneously and uses the same set of HAOs for all the struc-
tures. This is analogous to the MO-based CASSCF method, and
both methods should be numerically quasi-identical if all struc-
tures for a given dimension of the active space are included. How-
ever, usually VB methods employ only a few structures that are
essential for describing the system of interest and use the strictly
localized orbitals. Consequently, the VBSCF results are often
less accurate than those of CASSCF. Nevertheless, both of the
methods include some degree of static electron correlation, but
lack dynamic correlation.

The VBSCF method branches into two sets of methods.
The one to the right is the breathing-orbital VB (BOVB)
method,113�115 where one uses the same VBSCF wave func-
tion, but with an additional degree of freedom that allows the
HAOs to be different for the different structures. Thus, the
orbitals adapt themselves to the instantaneous field of each
structure, which has the effect of introducing the dynamic cor-
relation that is necessary to provide accurate energies. The two
branches to the left in Scheme 3 are two alternative ways of
improving VBSCF by introducing dynamic correlation. This is
done by means of post-SCF treatments that are analogous to
MRCI and MRPT2 in the MO theory. In the valence bond
configuration interaction method (VBCI),116,117 the VBSCF
energy and wave function are improved by CI. On the other
hand, the valence bond second-order perturbation method
(VBPT2)118 uses perturbation theory, taking the VBSCF wave
function as the zeroth-order reference. It is worthwhile to
emphasize that, despite the excited VB structures that are

Scheme 2. Complete Set of VB Structures for a Hydrogen
Abstraction Process

Scheme 3. Tree of Modern VB Methods That Are Based on
Classical VB Theory

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-001.png&w=164&h=88
http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-002.jpg&w=212&h=174


D dx.doi.org/10.1021/cr100228r |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

included in the VBCI or VBPT2 method, the corresponding
wave function of the system still retains a compact form by
condensing the extensive VBCI/VBPT2 wave function into a
minimal set of the fundamental structures that are used in the
VBSCF calculation (e.g., in Scheme 2). As such, all VB proper-
ties such as weight and resonance energy are still clearly defined
in both high-level methods in the samemanner as in the VBSCF
method. We note that both the BOVB and VBCI come in
various internal levels of sophistication, which will be described
in the corresponding sections in some detail.

In addition to the above VB methods, there are add-ons that
enable one to carry out calculations in solution using the polar-
izable continuummodel (PCM)119,120 or SMx (x=1�8) models,121

hence valence bond polarizable continuum model (VBPCM)
and valence bond solvation model (VBSM), or by incorpora-
tion of molecular mechanics (MM), hence VB/MM, to carry
reactions inside protein cavities.122 As such, with this arsenal of
methods, VB theory is coming of age and starting to be useful
for the treatment of some real chemical problems, as this review
will show.

In addition to the strict VB methods displayed in Scheme 3,
the review will also describe MO-based methods that generate
VB-type information which can be used for some specific
VB applications. The block-localized wave function (BLW)
method123�127 is a type of VBmethod that utilizes an HF wave
function with block-localized orbitals. By partitioning the mo-
lecular orbitals to the subgroups of a molecule, a BLW can
describe a specific VB structure at the HF level. Thus, the
BLW is capable of computing delocalization/resonance energies
and charge transfer effects among molecules. The BLW approach
is related to the early Kollmar method,128 wherein the subgroup
orbitals were input and the energy for this so-generated “localized”
reference was computed at zero iteration, without optimization of
the orbitals. Both methods belong to a general class of MO- and
density functional theory (DFT)-based energy decomposition
analysis (EDA) approaches129�133 which use as a reference
either a fragment-localized wave function or a density and
thereby estimate the various interactions between the frag-
ments, thus providing VB-related information from MO or
DFT calculations. For space economy, we shall limit our
coverage to the BLWmethod since this method performs the
energy decomposition closer to the VB spirit compared to
other EDA methods.

The molecular orbital valence bond method (MOVB)125 is an
extension of the BLWmethod, which uses a multireference wave
function, thus allowing calculation of the electronic coupling
energy resulting from the mixing of two or more block-localized
structures.

The structure of the review follows the above ordering of VB
methods, which are detailed in section 2. This methodology
section, which will certainly interest the computation-oriented
reader, is followed by applications which demonstrate the cap-
ability of VB theory to lead to lucid physical insight into a variety
of problems, now approaching “real size”. Then section 4
describes algorithms and techniques which make modern VB
theory faster and more efficient. Lastly, section 5 illustrates the
current capabilities ofmodern VBmethods by displaying ab initio
VB calculations for a sizable molecular system, (CO)4Fe(C2H4).
The review is written in such a way that the application-oriented
reader who is less interested in the methodological details can
skip parts of section 2 and then proceed to the applications in
sections 3 and 5.

2. AB INITIO VALENCE BOND METHODS

2.1. Theoretical Background
In VB theory, a many-electron wave function is expressed in

terms of VB functions:

Ψ ¼ ∑
K
CKΦK ð1Þ

where the VB function ΦK corresponds to a classical VB struc-
ture. In quantum chemistry, any state function ΦK should be a
spin eigenfunction that is antisymmetric with respect to permu-
tations of electron indices. In general, a VB function is of the
form

ΦK ¼ ÂΩ0ΘK ð2Þ
where Â is an antisymmetrizer,Ω0 is a direct product of orbitals
{ϕi} as

Ω0 ¼ ϕ1ð1Þ ϕ2ð2Þ ::: ϕNðNÞ ð3Þ
and ΘK is a spin-paired spin eigenfunction,134 defined as

ΘK ¼ 2�1=2½Rðk1Þ βðk2Þ � βðk1Þ Rðk2Þ�
�2�1=2½Rðk3Þ βðk4Þ � βðk3Þ Rðk4Þ� ::: RðkpÞ ::: RðkNÞ

ð4Þ
In eq 4, the scheme of spin pairing (k1, k2), (k3, k4), etc.,
corresponds to the bond pairs that describe the structure K.
Linearly independent electron pairing schemes may be selected
by using the Rumer diagrams.135 In a Rumer diagram, we set
down the electron indices, 1, 2, ..., N, in a ring, representing each
factor 2�1/2[R(ki)β(kj)�β(ki)R(kj)] in eq 4 by an arrow from i
to j. On the basis of the Rumer rule, the independent Rumer
structure set is obtained by drawing all possible Rumer diagrams
in which there are no crossed arrows. Scheme 4 shows the five
Rumer structures for the benzene molecule, where, as is well-
known, the first two are Kekul�e structures and the last three are
Dewar structures.

Rumer’s rule is applicable for singlet states with spin quantum
number S = 0. To extend to the general spin S, extended Rumer
diagrams136 should be applied, where a pole is added in the
diagram. A VB function with a Rumer spin function is called a
Heitler�London�Slater�Pauling (HLSP) function.

An alternative way of writing the wave function is by use of a
Slater determinant form, which will be used in this review. For
example, the (k1, k2) bond-paired wave function will be given by

ΦK ¼ j:::ðϕk1 ϕ̅k2 � ϕ̅k1ϕk2Þ:::j ð5Þ
where the bar over the orbital denotes a β spin while lack of it
denotes spin R. In turn, ΦK will be written as a product of the
Slater determinant forms for all the bond pairs.

The coefficientsCK in eq 1 can conveniently be determined by
solving the secular equationHC = EMC, where Hamiltonian and
overlap matrices are defined as follows:

HKL ¼ ÆΦK jHjΦLæ ð6Þ

Scheme 4. Five Rumer Structures for the Benzene Molecule
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and

MKL ¼ ÆΦK jΦLæ ð7Þ
VB structural weights can be evaluated by the Coulson�

Chirgwin formula,137 which is an equivalent of the Mulliken
population analysis:

WK ¼ ∑
L
CKMKLCL ð8Þ

Apart from the Coulson-Chirgwin formula, other definitions for
structural weights have also been proposed, such as L€owdin’s
symmetrical weights138 and Gallup’s inverse weights.139 VB
structural weights are typically used to compare the relative
importance of individual VB structures and can be helpful in the
understanding of the correlation between molecular structure
and reactivity.

2.2. VB Methods of the HLSP Type
2.2.1. VBSCF Method. In the old classical VB method, VB

functions were built upon AOs, taken from the atom calculations,
and the coefficients of structures were optimized to minimize the
total energy of the system. Obviously, the computational results
were extremely poor due to the use of frozen atomic orbitals.
The VBSCF method was the first modern VB approach that
also optimized orbitals. It was devised by Balint-Kurti and van
Lenthe94,95 and was further modified and efficiently implemen-
ted by van Lenthe and Verbeek.140,141 In the VBSCFmethod, the
wave function is expressed in terms of VB functions as

ΨVBSCF ¼ ∑
K
CSCF
K Φ0

K ð9Þ

where both of the structure coefficients (CK
SCF) and VB functions

(ΦK
0 ) are simultaneously optimized to minimize the total energy.

The VB functions are optimized through their occupied orbitals,
which are usually expanded as linear combinations of basis
functions:

ϕi ¼ ∑
μ
Tμiχμ ð10Þ

Basically, whenever VBSCF takes all independent VB struc-
tures and uses delocalized orbitals, e.g., overlap-enhanced orbitals
(OEOs), it will be equivalent to CASSCF with the same active
electrons and orbitals. However, usually the VBSCF method
employs only a few structures that are essential to describe the
system of interest, whereas CASSCF uses the complete set of
configurations within the active-space window. One of the
advantages of VBSCF, associated with purely localized HAOs,
is having a compact wave function with a limited number of VB
structures. Indeed, using pure HAOs to define the VB structures
makes the neutral covalent structures largely predominant, as is
well-known in the two-electron two-orbital case (Scheme 1a).
Following this principle, the selection of VB structures can be
done by chemical background in the polyatomic case. Thus, in
using VBSCF, it is usually advisable to remove the multi-ionic
structures, which are generally of very high energy compared
with covalent andmonoionic structures. Furthermore, symmetry
considerations are often helpful for removing additional structures
which have no symmetry match to mix with the low-lying
covalent and monoionic structures. For example, in the study of
C2, using 92 VB structures in the VBSCF gives almost the same
result as the full set of 1764 structures, both numerically and
qualitatively.142 A discussion of the strategy of selecting only

the important VB structures was given in the recent study of the
various states of O2.

143

The VBSCF method permits complete flexibility in the
definition of the orbitals used for constructing VB structures.
The orbitals can be allowed to delocalize freely during the
orbital optimization (resulting in OEOs), and then it will
resemble the GVB and SCmethods. The orbitals can be defined
also by pairs that are allowed to delocalize over the two bonded
centers (bond-distorted orbitals, BDOs144), or they can be
defined as strictly localized on a single center or fragment
(resulting in HAOs).
2.2.2. BOVB Method. The BOVB method113�115 was de-

vised with the aim of computing diabatic or adiabatic states with
wave functions that combine the properties of compactness,
unambiguous interpretability in terms of structural formulas, and
accuracy of the calculated energies. The following features have
to be fulfilled to retain interpretability and achieve reasonably
good accuracy for the BOVB method: (i) the VB structures are
constructed with HAOs, which means that covalent and ionic
forms are explicitly considered; (ii) all the VB structures that are
relevant to the electronic system being computed are generated;
(iii) the coefficients and orbitals of the VB structures are
optimized simultaneously. An important specificity of the BOVB
method is that the orbitals are variationally optimized with the
freedom to be different for different VB structures. Thus, the
different VB structures are not optimized separately but in the
presence of each other, so that the orbital optimization not only
lowers the energies of each individual VB structure but also
maximizes the resonance energy resulting from their mixing.
Since the BOVB wave function takes a classical VB form, its

implementation is less practical for large electronic systems,
because a large number of VB structures would have to be
generated in such a case. As such, the usual way of using BOVB is
to apply it only on those orbitals and electrons that undergo
significant changes during the process, such as bond breaking
and/or formation; the remaining orbitals are treated as doubly
occupied MOs. However, even though the “spectator electrons”
reside in doubly occupied MOs, these orbitals too are allowed to
optimize freely, but are otherwise left uncorrelated.
The difference between the BOVB and VBSCFwave functions

can be illustrated on the simple example of the description of the
A�B bond, where A and B are two polyelectronic fragments.
Including the two HAOs that are involved in the bond in the
active space, and the adjacent orbitals and electrons in the
spectator space, the VBSCF wave function reads

ΨVBSCF ¼ C1ðjψψ̅ϕaϕ̅bj � jψψ̅ϕ̅aϕbjÞ
þ C2jψψ̅ϕaϕ̅aj þ C3jψψ̅ϕbϕ̅bj ð11Þ

where ϕa and ϕb are the active orbitals, common to all the
structures, andψ is a generic term that represents the product of
spectator orbitals, also common to all structures. On the other
hand, the BOVB wave function takes the following form:

ΨBOVB ¼ B1ðjψψ̅ϕaϕ̅bj � jψψ̅ϕ̅aϕbjÞ
þ B2jψ0ψ̅0ϕa

0ϕ̅a
0j þ B3jψ00ψ̅00ϕb

00ϕ̅b
00j ð12Þ

Physically, one expects the ϕa
0 and ϕb

00 orbitals to be more
diffuse than ϕa and ϕb since the former are doubly occupied
while the latter are only singly occupied. Similarly, the spectator
orbitals in the different structures should have different sizes
and shapes depending on whether they reside on cationic,



F dx.doi.org/10.1021/cr100228r |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

neutral, or ionic fragments. These differences are significant
enough to be apparent with the naked eye, as shown in Figure 1,
which displays some optimized π-orbitals for the three VB
structures of difluorine, obtained by a BOVB calculation using
the 6-31+G** basis set.
Thus, both the active and spectator orbitals can be viewed as

instantaneously following the charge fluctuation by rearranging
in size and shape, hence the name “breathing orbital”. The
physical meaning of this “breathing-orbital effect” can be grasped
by remembering that the CASSCF and VBSCF levels only bring
nondynamic electron correlation and that the missing dynamic
correlation is obtained by further CI involving single, double, etc.,
excitations to outer valence orbitals. Now, as CI involving single
excitations is physically equivalent to an orbital optimization
(to first order), it becomes clear that BOVB brings dynamic
correlation and is comparable to VBSCF + singles-CI, with the
further advantage that it keeps the wave function as compact as
the VBSCF wave function. More specifically, BOVB confers only
that part of the dynamic correlation that varies along a reaction
coordinate or throughout a potential surface. Therefore, it would
be more exact to say that BOVB brings differential dynamic
correlation. As such, BOVB brings about better accuracy relative
to the VBSCF, GVB, SC, and CASSCF levels, as shown in
benchmark calculations of bond dissociation energies and reac-
tion barriers.113�115,145 The relationship between the effect of
breathing orbitals and dynamic correlation is particularly well
illustrated in three-electron bonds, where all the electron correla-
tion is of dynamic nature.146

The BOVBmethod has several lxevels of accuracy. At the most
basic level, referred to as L-BOVB, all orbitals are strictly localized
on their respective fragments. One way of improving the
energetics is to increase the number of degrees of freedom by
permitting the inactive orbitals to be delocalized. This option,
which does not alter the interpretability of the wave function,
accounts better for the nonbonding interactions between the
fragments and is referred to as D-BOVB. Another improvement
can be achieved by incorporating radial electron correlation in
the active orbitals of the ionic structures by allowing the doubly
occupied orbitals to split into two singly occupied orbitals that
are spin-paired. This option carries the label “S” (for split),
leading to the SL-BOVB and SD-BOVB levels of calculation, the
latter being the most accurate one. In this manner, the two
electrons are relocated into different regions of the space, as
clearly seen in Figure 2, which shows the two split and spin-
paired pz orbitals of F

� in difluorine.
2.2.3. VBCI Method. An alternative way of introducing dy-

namic correlation into theVB calculation is theVBCImethod116,117,
which uses the configuration interaction technique to incorporate
the correlation. In MO-based theory, configuration interaction
provides a conceptually simple tool for describing dynamic

correlation via single-reference methods such as CISD andmulti-
reference-based methods such as MRCI. Similar ideas have also
been applied to VB theory.7,25,116,117,147�153 The CI technique
usually requires a huge number of excited configurations; however,
the aim of the VBCI method is to retain the conceptual clarity of
the VBSCF method while improving the energetic aspect by
introducing further electron correlation.
The VBCI method is a post-VBSCF approach, where the

initially calculated VBSCF wave function is used as a reference.
The VBCI wave function augments the VBSCF wave function
with excited VB structures, which are generated from the refer-
ence wave function by replacing occupied (optimized VBSCF)
orbitals with virtual orbitals. Different from MO-based methods,
where virtual orbitals can be obtained from an SCF procedure,
the virtual orbitals in VB theory are not available in the VBSCF
calculation and should be defined for the VBCI method. To
generate physically meaningful excited structures, the virtual
orbitals should also be strictly localized, like the occupied VB
orbitals. In the original VBCI method, the virtual orbitals were
defined by using a projector:

PA ¼ TAðTA
þMATAÞ�1TA

þSA ð13Þ
where TA is the vector of orbital coefficients and theMA and SA
are, respectively, the overlap matrices of the occupied VB orbitals
and the basis functions, respectively, while the index A indicates
that all matrices are associated with fragment A. It can be shown
that the eigenvalues of the projector PA are 1 and 0. The
eigenvectors associated with eigenvalue 1 are the occupied VB
orbitals, while the eigenvectors associated with eigenvalue 0 are
used as the virtual VB orbitals of fragment A. By diagonalizing the
projectors for all blocks, we can have all the virtual VB orbitals. A
simpler way, which was implemented in the current versions of
the VBCI and VBPT2 methods, uses Schmidt orthogonalization
that is imposed on each fragment.118

With localized occupied and virtual orbitals, one can generate
excited VB structures by replacing occupied orbitals with virtual
orbitals. To create chemically meaningful excited structures,
the excitation should involve the replacement of an occupied
VB orbital only by those virtual orbitals that belong to the
same fragment as the occupied orbital. As such, the excited VB
structure ΦK

i retains the same electronic pairing pattern and
charge distribution as ΦK

0 . In other words, both ΦK
i and ΦK

0

describe the same “classical” VB structure. A VBCI functionΦK
CI

is defined by adding all excited VB structures ΦK
i to the

fundamental structure ΦK
0 :

ΦCI
K ¼ ∑

i
Ci
KΦ

i
K ð14Þ

Figure 1. L-BOVB-computed πy orbitals of F2. Note the size difference
in the left-hand vs right-hand side orbitals of the ionic forms. The two F
atoms lie on the horizontal z-axis.

Figure 2. SL-BOVB split p1z orbital of the F
� fragment in the F�F+

ionic structure in F2. The p1z orbital is split into two singly occupied
orbitals, one diffuse (faint color) and one more compact (strong color).
Red and yellow correspond to different signs of the lobes.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-004.jpg&w=240&h=66
http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-005.jpg&w=100&h=80
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where summation includes the fundamental structure. There-
fore, a many-electron VBCI wave function is written as a linear
combination of VBCI functions:

ΨVBCI ¼ ∑
K
CCI
K ΦCI

K ¼ ∑
K
∑
i
CKiΦ

i
K CKi ¼ CCI

K Ci
K

ð15Þ
where the coefficients CKi

are determined by solving the secular
equation. The total energy of the system is

EVBCI ¼
∑
K, L
∑
i, j
CKiCLjÆΦi

K jHjΦj
Læ

∑
K,L
∑
i, j
CKiCLjÆΦi

K jΦj
Læ

ð16Þ

The compact forms of the Hamiltonian and overlap matrices
may be respectively given by

HCI
KL ¼ ∑

i, j
CKiCLjÆΦi

K jHjΦj
Læ ð17Þ

and

MCI
KL ¼ ∑

i, j
CKiCLjÆΦi

K jΦj
Læ ð18Þ

A compact definition of the structure weights is

WK ¼ ∑
i
WKi ¼ ∑

L, i, j
CKiM

ij
KLCLj Mij

KL ¼ ÆΦi
K jΦj

Læ

ð19Þ
In this manner, the extensive VBCI wave function is con-
densed to a minimal set of fundamental structures, thus
ensuring that the VBCI method keeps the VB advantage of
compactness.
The CI space can be truncated following the usual CI

methodology. The levels of CI are fashioned as in the corre-
sponding MO�CI approach. Thus, VBCIS involves only single
excitations, while VBCISD involves singles and doubles, and so
on. VBCI applications145 show that VBCIS gives results that are
on par with those of D-BOVB, while the VBCISD method is
somewhat better, and its results match those of the MO-based
CCSD method. Furthermore, the VBCI method applies pertur-
bation theory to truncate less important excited structures and
estimates their contribution by an approximated perturbation
formula, resulting in a VBCIPT level.
2.2.4. VBPT2 Method. The accuracy of VBCI applications is

always satisfactory,143,145,154,155 but the method is computation-
ally demanding. The stumbling blocks in a VBCI calculation are
(i) the construction of the Hamiltonian matrix with nonortho-
gonal AOs and (ii) the solution of the general secular equation,
where the overlap matrix is nonunity. Perturbation theory is
known to be an economical assessment of electronic correlation
and is widely applied not only in MO-based methods, but also in
the VB framework, such as in the GVB11,156�159 and SCVB
methods.152

The VBPT2 method118 uses perturbation theory to incorpo-
rate dynamic correlation for the VB method, much like CASPT2
(e.g., VBPT2 suffers the same defect as CASPT2, e.g., intruder
states). In the VBPT2method, the wave function is written as the
sum of the zeroth- and the first-order wave functions

jΨVBPT2æ ¼ jΨð0Þæ þ jΨð1Þæ ð20Þ

where the VBSCF wave function is taken as the zeroth-order
wave function

jΨð0Þæ ¼ jΨSCFæ ¼ ∑
K
CSCF
K jΦ0

Kæ ð21Þ

Since higher order excitations do not contribute to the first-
order interacting space, the first-order wave function is written as
a linear combination of the singly and doubly excited structures,
ΦR:

Ψð1Þ ¼ ∑
R ∈ V SD

Cð1Þ
R jΦRæ ð22Þ

The excited VB structures may be generated by replacing
occupied orbitals with virtual ones, as in the VBCI method.
However, to enhance the efficiency of VBPT2, the VB orbitals are
defined in a different way and are partitioned into three groups:
inactive, active, and virtual orbitals. The inactive orbitals are always
doubly occupied in the VBSCF wave function, the active orbitals
are occupied orbitals, with variable occupancies, and the virtual
orbitals are always unoccupied in the VBSCF reference. These
three groups maintain the following orthogonality properties:
(i) The inactive and virtual orbitals are orthogonal within their
own groups. (ii) The active orbitals are kept in the VB spirit as
mutually nonorthogonal, but are orthogonal to the inactive and
virtual orbitals by a Schmidt orthogonalization, which is done in
the following order:
(1) The L€owdin orthogonalization is performed for the in-

active orbitals.
(2) The Schmidt orthogonalization procedure is carried out

between groups (inactive and active orbital groups),
rather than each basis, where the order is inactive orbitals
first and then active orbitals.

(3) The virtual orbitals are obtained by a two-step procedure:
(3.1) group (Schmidt) orthogonalization between occu-
pied orbitals and basis functions (occupied orbitals first
and then basis functions); (3.2) removal of linearly inde-
pendent vectors in the basis functions after step 3.1.

Such a definition of the orbitals keeps the VBSCF energy
invariant, while the orthogonalization between orbital groups en-
sures the efficiency of the VBPT2 method.
In a fashion similar to that of MO-based multireference

perturbation theory, a one-electron Fock operator is defined as

f̂ ðiÞ ¼ ĥðiÞ þ ∑
m, n

DSCF
mn ĴmnðiÞ � 1

2
K̂mnðiÞ

� �
ð23Þ

where Ĵmn and K̂mn are Coulomb and exchange operators,
respectively, Dmn

SCF is the VBSCF density matrix element, and
m and n denote the valence bond orbitals. Using the Fock operator
defined in eq 23, the zeroth-order Hamiltonian is defined as

Ĥ0 ¼ P̂0F̂P̂0 þ P̂KF̂P̂K þ P̂SDF̂P̂SD þ ::: ð24Þ
where F̂ = ∑

i
f̂ (i), P̂0 = |0æÆ0| is a projector onto the VBSCF space,

P̂K is a projector onto the space complementary to that of the
VBSCF wave function, and P̂SD is a projector associated with
singly and doubly excited structures from the reference wave
function.
On the basis of the Rayleigh�Schr€odinger perturbation

theory, the expansion coefficients of the first-order wave function
and the second-order energy are written respectively as

Cð1Þ ¼ ðH11
0 � Eð0ÞM11Þ�1H10Cð0Þ ð25Þ
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Eð2Þ ¼ Cð0ÞþH01ðH11
0 � Eð0ÞM11Þ�1H10Cð0Þ ð26Þ

where C(0) and C(1) are the coefficient column matrices of the
VBSCF, eq 21, and the first-order wave functions, eq 22,
respectively, E(0) is the zeroth-order energy, and matrices H0

11,
H01, H10, and M11 are respectively defined as

ðH11
0 ÞRS ¼ ÆΦRjĤ0jΦSæ ð27Þ

ðH01ÞKR ¼ ÆΦK jĤjΦRæ ðH10ÞRK ¼ ÆΦRjĤjΦKæ
ð28Þ

ðM11ÞRS ¼ ÆΦRjΦSæ ð29Þ
In the above equations, index K and indices R and S are

respectively for the fundamental and the excited structures. Ĥ is
the total system Hamiltonian.
It is obvious that the largest matrix is H0

11, which is block-
diagonal, owing to the orthogonality constraints that are applied
to the different orbital sets. Therefore, the VBPT2 method is
computationally efficient, compared to VBCI. No Hamiltonian
matrix elements with nonorthogonal orbitals are required past
the VBSCF step. Owing to the orthogonality between different
orbital groups, all matrix elements involved in the perturbation
correction procedure of VBPT2may be easily computed by using
the Condon�Slater rules.
Though the VBPT2 wave function involves a large number of

excited structures, the wave function is ultimately expressed in
terms of a minimal number of fundamental structures, as in the
VBSCF, by partitioning the first-order wave function into the
fundamental structures.
VBPT2 applications show that the method gives computa-

tional results that are on par with those of the VBCISD method
and match those of the MO-based MRCI and CASPT2 methods
(at the same basis sets). The total VBPT2 energies match those
of CASPT2 if one uses a properly designed VB wave function as a
reference. Figure 3 shows the computational errors of bond
dissociation energies relactive to FCI with various methods,
where 3 structures, 1 covalent and 2 ionic, are involved for H2

and F2, and 12 and 17 structures are used for O2 and N2.

2.3. Add-Ons: VB Methods for the Solution Phase
2.3.1. VBPCMMethod. Solvation plays an important role in

the molecular energy, structure, and properties. Theoretical
treatments of solute�solvent interactions have been the subject
of many studies in computational chemistry. In this sense, the
continuum solvation model is one of the most economical tools
for describing the solvation problem. A typical and commonly
used continuum solvationmodel developed by Tomasi et al.119,120

is the PCM, wherein the solvent is represented as a homogeneous
medium, characterized by a dielectric constant and polarized by
the charge distribution of the solute. The interaction between the
solute charges and the polarized electric field of the solvent is
taken into account through an interaction potential that is
embedded in the Hamiltonian and determined by a self-consistent
reaction field (SCRF) procedure.
With its lucid insight into the understanding of chemical

reaction, VB theory is very well suited for elucidating solvent
effects in solution-phase reactions. Coupling the VBmethodwith
the PCM119,120,160�167 generates the VBPCMmethod,168 which
was developed for exploring the solute�solvent interactions at

the ab initio VB level. VBPCM uses the IEF version of the PCM
model,165�167 which is widely implemented in standard quantum
chemical programs. To incorporate solvent effects into a VB
scheme, the state wave function is expressed in the usual terms as
a linear combination of VB structures, but now these VB
structures interact with one another in the presence of the
polarizing field of the solvent. The Schr€odinger equation for
the VBPCM can be expressed as

ðH0 þ VRÞΨVBPCM ¼ EΨVBPCM ð30Þ
where H0 is the gas-phase Hamiltonian and the interaction
potential VR for the ith iteration is given as a function of the
electronic density of the (i � 1)th iteration and is expressed in
the form of one-electron matrix elements that are computed by a
standard PCM procedure. The detailed procedures are as
follows:
(1) A VBSCF procedure in a vacuum is performed, and the

electron density is computed.
(2) Given the electron density from step 1, effective one-

electron integrals are obtained by a standard PCM
subroutine.

(3) A standard VBSCF calculation is carried out with the
effective one-electron integrals obtained from step 2. The
electron density is computed with the new optimized VB
wave function.

(4) Repeat steps 2 and 3 until the energy difference between
the two iterations reaches a given threshold.

Having the optimized wave function, the final energy of a
system in solution is evaluated by

E ¼ ÆΨVBPCMjH0 þ 1
2
VRjΨVBPCMæ ð31Þ

By performing the above procedure, the solvent effect is taken
into account at the VBSCF level, whereby the orbitals and
structural coefficients are optimized until self-consistency is
achieved. The VBPCM method enables one to study the energy
curve of the full VB state as well as that of individual VB structures
throughout the path of a chemical reaction and then reveal the
solvent effect on the different VB structures as well as on the total
VB wave function. The method has been applied to the studies of
SN2 reactions in aqueous solution,

168,169 which will be reviewed
in section 3, and to the heterolytic bond dissociation of C4H9Cl
and C3H9SiCl in aqueous solution.170 Figure 4 shows the
potential energy curves of C4H9Cl in the gas phase and in the
solvated phase, which illustrate intuitively different dissociation
behaviors in the two different media, dissociating to radicals in
the gas phase and to free ions in water.

Figure 3. Computational errors of bond dissociation energies relative
to the FCI method. Aug-cc-pVTZ basis set for H2, DZP for N2 and O2,
and cc-pVTZ for F2.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-006.jpg&w=207&h=92
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2.3.2. VBSM Method. The VBPCM method incorporates
PCM into the VB method, while the VBSM method applies the
SMx (x = 1�8)121,171,172 solvation model. SMx (x = 1�8),
developed by Truhlar and co-workers, treats the electrostatics
due to bulk solvent by the generalized Born approximation with
self-consistent partial atomic charges.121 In the SMx (x = 1�8)
model,121,171,172 the electrostatic free energy of solvation is aug-
mented by terms proportional to the solvent-accessible surface
areas of the solute’s atoms times empirical geometry-dependent
atomic surface tensions, accounting for cavitation, dispersion,
and solvent structure effects, where the solvent structure effects
include short-range deviations of the electrostatics from the bulk
electrostatic model. The solvation free energy of SMx (x = 1�8)
can be expressed as

ΔGS ¼ ΔEE þ GP þ GCDS ð32Þ
where GP is the negative electric polarization term, ΔEE is the
positive electronic energy term, andGCDS is the term accounting
for cavitation, dispersion, and solvent structure. The sum of GP

and ΔEE is called ΔGEP.
In the VBSM method,173 electronic density is computed by

using a VB wave function, which is used for computing the partial
atomic charges, while all other parameters are taken from the
normal SM6 solvation model.171 As such, the VBSM method is
able to produce all VB properties and thus provide intuitive
insights into studied chemical problems in solution as the
VBSCF method does in the gas phase.
To perform a VBSM calculation with orbital optimization, the

following steps are involved in the current version of XMVB:
(1) Calculate (i) the Coulomb integrals γkk0(R) that enter the

generalized Born calculation, where k and k0 label atoms,
(ii) the solvent-accessible surface areas Ak(R), and
(iii) the geometry-dependent factors that enter the GCDS

calculation. R denotes the current geometry of the solute
molecule.

(2) Perform a standard VBSCF calculation and then obtain
the gas-phase VB wave function.

(3) Using the current VB density, we calculate the current
partial atomic charges qk(R) by Mulliken (M) or L€owdin
(L) population analysis, eqs 33 and 34

qMk ðRÞ ¼ Zk � ∑
R ∈ k

ðP 3 SÞRR ð33Þ

qLk ðRÞ ¼ Zk � ∑
R ∈ k

ðS1=2 3P 3 S1=2ÞRR ð34Þ

respectively, where Zk is the nuclear charge of atom k,
R is a basis function on atom k, and P and S are the one-
electron density and overlap matrices, respectively. Then
the generalized Born polarization energy121,171,172 is
calculated by

GP ¼ � 1
2

1� 1
ε

� �
∑
k
∑
k0
qkðRÞ qk0 ðRÞ γkk0 ðRÞ

ð35Þ
where ε is the bulk dielectric constant of the liquid
solvent. Then ΔGEP is obtained.

(4) Set ΔGEP into a new VBSCF procedure and solve a new
secular equation including SM6 terms. After the iterations
have converged, the total solvation energy at the ab initio
VB level is obtained.

Test calculations for a few systems show that the liquid-phase
partial atomic charges obtained by VBSM are in good agreement
with liquid-phase charges obtained by the charge model CM4.171

Free energies of solvation are calculated for two prototype test
cases, namely, for the degenerate SN2 reaction of Cl� with
CH3Cl in water and for a Menshutkin reaction in water. These
calculations show that the VBSM method provides a practical
alternative to single-configuration self-consistent field theory for
solvent effects in molecules and chemical reactions.
2.3.3. Combined VB/MM Method. The VB/MM method,

introduced by Shurki et al.,122 presents a new kind of combined
QM/MM method that combines the ab initio valence bond
method with MM by importing the ideas from the empirical
valence bond (EVB) approach.174,175 It utilizes the ab initio
VB approach for the reactive fragments and MM for the environ-
ment and thus extends VB applications to large biological
systems. In the VB/MM method, the Hamiltonian of the whole
system is expressed as

HVB=MM ¼ HIðVBÞ þ HOðMMÞ þ HI, OðVB=MMÞ
ð36Þ

where I and O stand for the inner (quantum) and the outer
(classical) regions. HI(VB) is the VB Hamiltonian of an isolated

Figure 4. Dissociation curves of RX (R = (CH3)3C) (a) in the gas phase and (b) in the solvated phase.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-007.png&w=451&h=185
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quantum region (the gas-phase Hamiltonian) of all the atoms in
the inner region, HO(MM) is the energy of all the atoms in the
outer region determined by use of an empirical force field, and
HI,O(VB/MM) is the Hamiltonian that accounts for all the inter-
actions between the quantum and the classical atoms.
The diagonal matrix elements of the Hamiltonian, which

include all the nonbonded interactions, are calculated by

HKK ¼ EKK ¼ E0KKðVBÞ þ EintKK ð37Þ
where EKK

0 (VB) is the Kth diagonal matrix element of the VB
structure energy in an isolated quantum region and EKK

int describes
the interactions of the ab initio VB active subsystemwith theMM
part involving all the nonbonded interactions, such as electro-
static, van der Waals, bulk, etc.
Following the idea underlying the EVB methodology,174,175

the off-diagonal matrix elements of the Hamiltonian can be
approximated as

HKL ¼ H0
KLðVBÞ þ ðWKE

int
KK þ WLE

int
LLÞM0

KL ð38Þ
where HKL

0 (VB) and MKL
0 are the off-diagonal elements of the

Hamiltonian and overlap matrices between the Kth and Lth
diabatic states (VB structures) in a vacuum, respectively.WK and
WL are the respective weights of VB structures K and L given by
eq 8.
The VB/MM method combines molecular mechanics for the

diagonal elements with ab initio VB calculations for the off-
diagonal elements, hence avoiding parametrizations as well as
interpolations. The method maintains the advantages of the EVB
methodology and provides an ab initio VB wave function.
Recently, a new version of VB/MM, called density-embedding
VB/MM (DE-VB/MM), was developed.176 The improvement
of the DE-VB/MM method is that the electrostatic interaction
between the VB active subsystem and the MM environment is
involved during the optimization of the VB wave function for the
QM fragment, which is implemented by adding effective one-
electron integrals to the ab initio VB Hamiltonian, hence taking
into account the wave function polarization of the QM fragment
due to the environment. A somewhat related method is the
MOVB/MM approach of Mo and Gao.177

2.4. Molecular Orbital Methods That Provide Valence-Bond-
Type Information
2.4.1. BLW Method. The BLW method is a simple bridge

between MO and VB methods which provides VB-type infor-
mation (e.g., resonance energies). As such, it is considered
herein as a variant of the ab initio valence bond method which
can be used for some specific applications, with the advantage of
retaining the efficiency of molecular orbital methods.123�127

The basic principle consists of partitioning the full basis set of
orbitals into subsets each centered on a given fragment. The
molecular orbitals are then optimized in a Hartree�Fock way,
with the restriction that each orbital is expanded only on its own
fragment. The MOs of a given fragment are orthogonal among
themselves, but the orbitals of different fragments have finite
overlaps.
The applications of the BLWmethod are designed primarily to

evaluate the electronic delocalization and charge transfer effects
between fragments/molecules. Thus, the block-localized wave
function represents a reference for evaluating delocalization
energies relative to the fully delocalized wave function.
A typical application of the BLW method is the energy

calculation of a specific resonance structure in the context

of resonance theory. As a resonance structure is composed,
by definition, of local bonds plus core and lone pairs, a bond
between atoms A and B will be represented as a bonding MO
strictly localized on the A and B centers, a lone pair will be an
atomic orbital localized on a single center, etc. With these
restrictions on orbital extension, the self-consistent field solution
can be decomposed to coupled Roothaan-like equation sets, each
corresponding to a block. The final block-localized wave func-
tion is optimized at the constrained Hartree�Fock level and is
expressed by a Slater determinant. Consequently, the energy
difference between the Hartree�Fock wave function, where all
electrons are free to delocalize in the whole system, and the
block-localized wave function, where electrons are confined to
specific zones of the system, is defined as the electron delocaliza-
tion energy. Recently, the BLW method has been extended to
DFT178 by replacing the Hartree�Fock exchange potential by a
DFT exchange-correlation (XC) potential in the Roothaan SCF
procedure. This improved BLW method, referred to as BLW-
DFT, has the advantages over the original method to bring
electron correlation to both the individual structure and the final
adiabatic states.
2.4.2. MOVB Method. The MOVB125 method is an exten-

sion of BLW, which allows calculation of the electronic coupling
energy resulting from the mixing of two or more diabatic states,
i.e., states corresponding to single-resonance structures. The
diabatic states are first calculated by the BLW method, and then
a nonorthogonal configuration interaction Hamiltonian is con-
structed using these diabatic states as the basis functions. Thus,
MOVB is a mixed molecular orbital and valence bond method,
since it makes use of a Hartree�Fock or DFT description for the
covalent bonds, while being able to calculate diabatic states.
Importantly, solvent effects can be incorporated into the MOVB
method. Thus, the MOVB method has been used to model
the proton transfer between ammonium ion and ammonia in
water,125 as well as a solvated SN2 reaction,177 using Monte
Carlo simulations.
One concern of the MOVB method is that the adiabatic state

wave function is simply a mixture of two diabatic states without
further reoptimization of the orbitals. To remedy this defect, an
alternative BLW-based two-state model has been devised179 that
is applicable to cases where a ground state Ψ0 can be approxi-
mately described in terms of a resonance between two diabatic
structures, ΦA and ΦB:

Ψ0 ¼ CAΦA þ CBΦB ð39Þ
Differently than in MOVB, here both the ground state and

diabatic states are independently optimized at the same Hartree�
Fock or DFT level, yielding the ground-state energy ε0 and the
diabatic energies εA and εB. The method assumes that, on one
hand, the diabatic states are orthogonal to each other

SAB ¼ ÆΦAjΦBæ ¼ 0 ð40Þ
but, on the other hand, the nonorthogonality effects are absorbed
by the effective off-diagonal Hamiltonian ÆΦA|H|ΦBæ, whose
value is not directly computed but determined via a “reverse
configuration interaction” procedure from the known values of
ε0, εA, and εB.
The orthogonality constraint further allows the construction

of the first excited state as

Ψ1 ¼ CBΦA � CAΦB ð41Þ
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Thus, on the basis of the energies of the two diabatic states and
the adiabatic state at the same level, one can derive the structural
weights of the diabatic states in the ground state, the coupling
energy between the two diabatic states, and the transition energy
to the first excited state without introducing any empirical
parameter.
Alongside the VB/MM method due to Shurki et al., MOVB/

MM177 is another kind of combined VB-type QM/MM method
which is based on the BLW method discussed above.

3. APPLICATIONS

This section covers a variety of applications of the VBmethods
described above. It begins with a short survey of the accuracy of
the methods and then discusses a panoramic set of applications.

3.1. Accuracy of Modern VB Methods
Any computational method dealing with reactivity must

describe as accurately as possible the elementary events of a
reaction, i.e., bond breakage or bond formation. This feature has
been tested for various VB methods,113�118,145,180 and the
emerging conclusion is that the methods which account for
dynamic correlation, e.g., BOVB, VBCI, and VBPT2, are reason-
ably accurate. On the other hand, the VB methods that involve
only nondynamical correlation, e.g., GVB and VBSCF, generally
provide good qualitative trends, but poor quantitative accuracy.

Table 1 shows bonding energies for a sample of homopolar
and heteropolar bonds calculated by various methods with basis
sets ranging from 6-31G* to cc-pVTZ.180 It is seen that BOVB
and VBCI give results on par with those of CCSD(T) calcula-
tions performed with the same basis sets. Furthermore, with a
large enough basis set, all these methods give results close to
experimental values.

Another important feature of modern VB methods is their
ability to calculate reaction barriers with reasonable accuracy.

This is illustrated in Table 2, where some barriers for hydrogen
abstraction reactions are calculated with various methods using
the 6-31G* basis set (entries 1�5). It is seen that the BOVB,
VBCISD, and VBCIPT methods provide barriers that are on par
with CCSD results using the same basis set. Moreover, for the
H• + H�H0 f H�H + H0• reaction (last entry), BOVB and
VBCISD also provide a barrier value very close to the exact
barrier and comparable to the experimental value of 9.8 ( 0.2
kcal/mol. On the other hand, the less elaborate VBSCF method,
which lacks dynamic correlation, generates barriers that are way
too high in all cases.

The ab initio VB method has also been applied to the excited
states of several diatomic molecules, such as O2, NF, B2, and
LiB+.143,155,181 All the VB studies provide satisfactory numerical
results with intuitive insights for the bonding of excited states.

Further examples, where VB-calculated barriers are on par
with benchmark values and close to experimental estimates, are
shown in the following sections.

3.2. Chemical Reactivity
There are two fundamental questions that any model of

chemical reactivity would have to answer: What are the origins
of the barriers? What are the factors that determine the reaction
mechanisms? Since chemical reactivity involves bond breaking
and making, VB theory, with its focus on the bond as the key
constituent of the wave function, is able to provide a lucid model
that answers these two questions in a unified manner. The
centerpiece of the VB model is the VB state correlation diagram
(VBSCD), which traces the energy of the VB configurations
along the reaction coordinate and provides a mechanism for
the barrier formation and generation of a transition state in an
elementary reaction (Figure 5).182

Table 1. BondDissociation Energies Calculated with Valence
Bond Methods180

De (kcal/mol)

bond basis set BOVB VBCISDa CCSD(T) exptl

F�F 6-31G* 36.2 32.3 32.8

cc-pVTZ 37.9 36.1 34.8 38.3

Cl�Cl 6-31G* 40.0 41.6 40.5

cc-pVTZ 50.0 56.1 52.1 58.0

Br�Br 6-31G* 41.3 44.1 41.2

cc-pVTZ 44.0 50.0 48.0 45.9

F�Cl 6-31G* 47.9 49.3 50.2

cc-pVTZ 53.6 58.8 55.0 60.2

H�H 6-31G** 105.4 105.4 105.9 109.6

Li�Li 6-31G* 20.9 21.2 21.1 24.4

H3C�H 6-31G** 105.7 113.6 109.9 112.3

H3C�CH3 6-31G* 94.7 90.0 95.6 96.7

HO�OH 6-31G* 50.8 49.8 48.1 53.9

H2N-NH2 6-31G* 68.5 70.5 66.5 75.4 ( 3

H3Si�H 6-31G** 93.6 90.2 91.8 97.6( 3

H3Si�F 6-31G* 140.4b 151.1 142.6 160 ( 7

H3Si�Cl 6-31G* 102.1 101.2 98.1 113.7( 4
aWith Davidson correction.116 bTwo-structure calculations (H3Si

�F+ is
omitted).

Table 2. Barriers for the Hydrogen Exchange Reactions X• +
HXf XH + X0• (X = CH3, SiH3, GeH3, SnH3, PbH3, and H)

a

molecule HF CCSD VBSCF BOVB VBCISD VBCIPT

CH3
b 35.1 26.5 33.0 23.1 25.8 25.5

SiH3
b 25.2 19.3 25.5 19.1 19.7 19.0

GeH3
b 22.0 16.6 25.5 18.0 18.1 17.0

SnH3
b 18.5 13.5 20.5 14.9 15.3 14.1

PbH3
b 15.2 13.0 17.3 12.3 12.5 11.5

Hc 9.8d 20.6 10.2 10.0
a Energies in kilocalories per mole. b 6-31G* basis set: columns 2�5, ref
117; columns 6 and 7, ref 116. cAug-cc-pVTZ basis set.145 dCCSD(T)
calculation.

Figure 5. VBSCD for a general reaction Rf P. R and P are the ground
states of the reactants and products, and R* and P* are the promoted
excited states.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-008.png&w=118&h=97
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This diagram applies to elementary reactions wherein the
barrier can be described as the interplay of two major VB states,
that of the reactants and that of the products. It displays the
ground-state energy profile for the reacting system (bold curve),
as well as the energy profiles for individual VB states (thinner
curves); these latter curves are also called “diabatic” curves, while
the full state energy curve (in bold) is called “adiabatic”. Thus,
starting from the reactant geometry on the left, the VB structure
Ψr that represents the reactant’s electronic state, R, has the
lowest energy and merges with the ground state. Then, as one
deforms the reacting molecules toward the product geometry,
Ψr gradually rises and finally reaches an excited state P* that
represents the VB structure of the reactants in the product geometry. A
similar diabatic curve can be traced from P, the VB structure of
the products in its optimal geometry, to R*, the same VB struc-
ture but in the reactant geometry. Consequently, the two curves
cross somewhere in the middle of the diagram. The crossing is of
course avoided in the adiabatic ground state, owing to the mixing
of the two VB structures, which stabilizes the resulting transi-
tion state by a resonance energy term, labeled B. The barrier is
thus interpreted as arising from avoided crossing between two
diabatic curves which represent the energy profiles of the VB
state curves of the reactants and products.

The nature of the R* and P* promoted states depends on the
reaction type and will be explained below using specific examples.
In all cases, the promoted state R* is the electronic image of P in
the geometry of R, while P* is the image of R at the geometry of P.
The G terms are the corresponding promotion energy gaps, B is
the resonance energy of the transition state, ΔEq is the energy
barrier, andΔErp is the reaction energy. The simplest expression
for the barrier is given by

ΔEq ¼ fGr � B ð42Þ

Here, the term fGr is the height of the crossing point, expressed as
some fraction (f) of the promotion gap at the reactant side (Gr).

A more explicit expression is

ΔEq ≈ f0G0 þ ðGp=2G0ÞΔErp þ ð1=2G0ÞΔErp2 � B

G0 ¼ 0:5ðGr þ GpÞ f0 ¼ fr þ fp ð43Þ

which considers the two promotion gaps and f factors through
their average quantities, G0 and f0. Equation can be further
simplified by neglecting the quadratic term and takingGp/2G0 as
∼1/2, thus leading to

ΔEq ¼ f0G0 þ 0:5ΔErp � B ð44Þ
Equation 44 expresses the barrier as a balance of the contribu-
tions of an intrinsic term, f0G0 � B, and a “driving force” term,
0.5ΔErp. The model is general and has been described in detail
before183�187 and applied to a large number of reactions of dif-
ferent types. Here wewill briefly summarize someVB computational
applications on hydrogen abstraction reactions and various SN2
reactions.
3.2.1. Hydrogen Abstraction Reactions. Consider a gen-

eral hydrogen abstraction reaction that involves cleavage of a
bond H�Y by a radical X•v (X, Y = a univalent atom or a
molecular fragment):

X•v þ H�Y f X�H þ Y•v ð45Þ

Practically,Ψr is a linear combination of covalent and ionic forms
that contribute to the Lewis structure “X•v + H�Y”, as shown in
the following:

Ψr ¼ C1ðX•v þ H•�•YÞ þ C2ðX•v þ Hþ :Y�Þ

þ C3ðX•v þ H:�YþÞ ð46Þ
This combination is maintained in Ψr from R to P* throughout
the reaction coordinate, while the coefficients of the contributing
structures change and adapt themselves to the geometric change
(e.g., at infinite H---Y distance, C1 = 1). The curve Ψp, which
stretches between P and R* is defined in an analogous manner.
Two definitions are possible for the diabatic state curvesΨr and
Ψp. In the variational diabatic configuration (VDC) method, the
energies of the diabatic states are variationally minimized, as is
done in the applications described below unless otherwise noted.
In this way, each diabatic state has the best possible combination
of coefficients and orbitals for this specific state. Alternatively, in
the consistent diabatic configuration (CDC) method,188 the
diabatic states are simply extracted from the ground-state wave
function by projection. As explained before,183 the inconveni-
ence of the CDC technique is that the so-constructed diabatic
states involve orbitals and VB coefficients of the ground state and
are therefore not optimal for the diabatic states. By comparison,
the VDC technique gives quasi-variational quantities for all the
parameters in the diagram (f, G, B).
Since the promoted state R* is the VB structure of P in the

geometry of R, its electronic state is illustrated by

R� ¼ ðX•v þ H•Þ---------•Y ð47Þ
where the H�Y bond is infinitely long, while the X•v radical
(spin-up) experiences some Pauli repulsion with the electron of
H, which is 50% spin-up and 50% spin-down. As such, the R*
state is 75% a triplet state, and hence, the Gr gap is (3/4)ΔEST,
ΔEST being the singlet�triplet excitation of the X�H bond that
undergoes activation.
In the study of identity reactions (X = Y), it has been shown

that, indeed, the promotion energy Gr required to go from
R to R* is proportional to the singlet�triplet gap of the X�H
bond186,189 or to the X�H bonding energy D(X�H). Actually,
systematic VB ab initio calculations by the VBCI method have
shown that, to a good approximation, Gr can be expressed as
follows:189

Gr ≈ 2DðX�HÞ ð48Þ
Moreover, a semiempirical derivation showed189 that the reso-
nance energy B is also proportional toD(X�H) by the following
expression:

B ≈ 0:5DðX�HÞ ð49Þ
From the semiempirical expression for the height of the crossing
point, it was possible to derive the value of the f factor for a series
of identity H abstraction reactions. As the f factor appears to be
relatively constant and close to 1/3, eqs 42 and 49 can be turned
into the very simple eq 50, where it is seen that the barrier for
identity H abstraction reactions depends on a single parameter of
the reactants, D(X�H).

ΔEq ≈ ð2f � 0:5ÞDðX�HÞ f ¼ 1=3 ð50Þ
The so-calculated barriers were shown to correspond quite

well to the corresponding CCSD(T) barriers for a series of
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identity abstraction reactions (X = Y = H, CH3, SiH3, GeH3,
SnH3, PbH3).

189 While the limitations of this expression have
been discussed in detail, e.g., in the case where the transition state
is not colinear for which B is larger than its value in eq 49 due to
mixing of additional structures,183 still eq 50 yields good orders of
magnitude and correctly reproduces the trends in the series.
For nonidentity reactions (X 6¼ Y), eq 44, which accounts

explicitly for all the reactivity factors, was applied190 to estimate
the barriers for a series of 14 H abstraction reactions. The plot
in Figure 6a shows good agreement with VBCISD-computed
barriers.
Albeit being apparently more difficult to treat than identity

reactions, if one assumes that the transition state coincides with
the geometry of the lowest crossing point in the VBSCD, one can
treat nonidentity reactions using semiempirical approximations
that enable estimation of barriers from easily available quantities.
Since the A�X and A�Y bonds are of different strengths, one
being the weakest and the other the strongest, they have
respective bonding energies DW andDS. VB calculations for the
14 reactions showed that B is approximately half of the weakest
bonding energy, DW, or, in other words, of the bond energy of
the bond that is broken in the reactants of the exothermic
direction of the reaction, while G0 is close to the sum of both
bonding energies:190

B ¼ 0:5DW G0 ¼ DW þ DS ð51Þ
Thus, by taking f0 ≈ 1/3 as in identity reactions (accurate VB
calculations yield f0 = 0.32�0.36),190 one gets the following
very simple equation:

ΔEq ¼ KðDS � 0:5DWÞ þ 0:5ΔErp K ≈ 1=3 ð52Þ
Figure 6b displays a good correlation of the barriers calculated

through eq 52 for the same 14 reactions as in Figure 6a plotted
against the VBCISD calculations. Thus, it appears that the
VBSCD model is able to express semiquantitative barriers for
H abstraction reactions in terms of the bonding energies of
reactants and products. Recent applications of eq 52 to the
reactivity of cytochrome P450 in alkane hydroxylation shows that
a good correlation with DFT-computed barriers is achieved with
eq 52 using f = 0.3 and a constant B value, which is very close to
0.5DW.

191,192

The MOVB method (see section 2.4.2) has also been applied
by Mo and Gao to describe the diabatic and adiabatic potential
energy curves in a model proton abstraction reaction:125

H3N: þ H�NH3
þ f H3N

þ�H þ :NH3 ð53Þ

At each point of the reaction coordinate, the three diabatic
VB structures, respectively those of the reactants and products,
complemented by an ionic structure [H3N:H

+ :NH3], were
calculated by the BLW method, and the adiabatic ground state
was calculated by configuration interaction between these VB
structures, without further optimization of the orbitals. The
MOVB results were found to be in good accord with the
corresponding ab initio Hartree�Fock calculations for the pro-
ton transfer process. The authors also incorporated solvent
effects into the MOVB Hamiltonian like in QM/MM calculations
and have modeled the proton transfer between ammonium ion
and ammonia in water using statistical Monte Carlo simulations
in a cubic cell involving 510 water molecules with periodic
boundary conditions.125 By comparison to previous semiempi-
rical treatments,174,175 both diagonal and off-diagonal matrix
elements in the MOVB Hamiltonian explicitly include solvent
effects in the calculation. The reaction coordinate in solution is
chosen as the energy difference between the diabatic reactant and
product VB states, which ensures that the solvent degrees of
freedom are adequately defined because the change in solute
�solvent interaction energy reflects the collective motions of the
solvent molecules as the reaction.125 As a result, solvent effects
were found to increase the barrier by 2.2 kcal/mol relative to that
of the gas-phase process.
3.2.2. SN2 Reactions in the Gas Phase. A generic SN2

reaction is shown in eq 54 where the nucleophile, X:�, shifts an
electron to the A�Y electrophile and forms a new X�A bond
while the leaving group Y departs with the negative charge.

X:� þ A�Y f X�A þ :Y� ð54Þ
Let us derive now an expression forGr by simply examining the

nature of the excited state R* relative to the corresponding
ground state.183�187 In R*, A and Y are geometrically close to
each other (as in the ground state, R) and separated from X by a
long distance. The X fragment, which is neutral in the product P,
must remain neutral in R* and therefore carries a single active
electron. As a consequence, the negative charge is located on the
A---Y complex, so that theR* state is the result of a charge transfer
from the nucleophile (X:�) to the electrophile (A�Y), as
depicted by

R� ¼ X• // ðA\YÞ� ð55Þ
It follows that the promotion from R to R* has two parts: an
electron detachment from the nucleophile, X:�, and an electron
attachment to the electrophile, A�Y. The promotion energy Gr

is therefore the difference between the vertical ionization

Figure 6. VBSCD-derived barriers plotted against ab initio VB-calculated barriers (kcal/mol).

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-009.png&w=334&h=138
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potential of the nucleophile, IX:* , and the vertical electron affinity
of the electrophile, AA�Y* , given by

G ¼ I
�
X: � A

�
A�Y ð56Þ

where the asterisk denotes vertical quantities. Thus, the mechan-
ism of a nucleophilic substitution may be viewed as an electron
transfer from the nucleophile to the electrophile and a coupling
of the supplementary electron of the electrophile to the remain-
ing electron of the nucleophile. In fact, the description is general
for any electrophile�nucleophile combination.
Ab initio BOVB calculations have been performed by Song

et al.193 for the following identity reaction using the XMVB
program:108,109

X:� þ H3C�X f X�CH3 þ X:� ðX ¼ F, Cl, Br, IÞ
ð57Þ

In the gas phase, the barriers from the reactant complex
[X� (H3C�X)] to the transition state, as calculated at the
BOVB/6-31G* level, were found to be within less than 3 kcal/mol
of the CCSD(T) values in the same basis set (see Table 3).
The BOVB method was also used to derive the barrier-
controlling factors for the VBSCD model using eq 42. It was
found that the f parameter is quasi-constant, 0.197, 0.181,
and 0.197 for X = F, Cl, and Br, respectively, and somewhat
larger, 0.234, for X = I (Table 3). This indicates that f is
relatively independent of the nature of X, at least within the
series of halide exchange reactions. On the other hand, as
expected from previous treatments,186 the value of B should
be sensitive to the charge on the central methyl group. This
expectation was indeed realized in the BOVB calculations,
which showed that B is not constant and obeys the following
semiempirical expression:

BðSN2Þ ¼ ð1�Q Þ0:5D ð58Þ
where D is the bonding energy of the X�CH3 bond and Q is
the weight of the X� [CH3]

+ X� VB structure in the transition
state or, more simply, the net charge of the CH3 fragment in the
transition state. Importantly, the Q parameter is close to 0.5 in
the X = F, Cl, Br series, varying between 0.53 and 0.41 (see
Table 3). Therefore, the barrier can be estimated through eq 42
from a property of the reactants,Gr, a quasi-constant parameter, f,
and an easily quantifiable parameter, B.
It is tempting to consider the f and Q parameters for the

identity reactions as being universal within a given row of the
periodic table and to use them unchanged to predict barriers in
nonidentity SN2 reactions. This has been done with a very
unsymmetrical reaction,169 the Menshutkin reaction (eq 59

H3N: þ H3C�Cl f H3N
þ�CH3 þ X:� ð59Þ

and Figure 7), which is very endothermic in the gas phase and at
the same time proceeds with neutral reactants while the products
are ionic. As the backward reaction is not a simple nucleophilic
attack but also involves the breaking of an ion pair in the gas
phase (IP in Figure 7), we will only consider the forward process
and eq 42, discarding eqs 43 and 44, which would be meaningless
in this case. As the nucleophile is NH3, it is legitimate to take the
same f factor as in the identity reaction with chlorine (Table 3),
i.e., f = 0.181, since N andCl have the same electronegativity (3.0).
For the B factor, we can use a formula derived from eq 58,

remembering that for a nonidentity reaction one uses the bond-

ing energy of the bond that is broken in the reactants of the
exothermic reaction, here H3N

+�Cl (see Figure 7):

BðSN2Þ ¼ ð1�Q Þ0:5DW DW ¼ DðH3N
þ�ClÞ

ð60Þ
Using a standard (MP2-calculated) value of 122.6 kcal/mol for
D(H3N

+�Cl) and an average value of 0.5 forQ in eq 60 yields a
value of 30.7 kcal/mol for B, in excellent agreement with the
BOVB/6-31G*-calculated value of 30.2 kcal/mol (Table 4).
The so-estimated f and B parameters can now be used in eq 42,
together with an estimation ofGr, to get a semiempirical barrier
for the Menshutkin reaction in the gas phase. Gr can be cal-
culated in the MO or VB framework or directly taken as an
experimental quantity when available.194 Here, the BOVB-
calculated promotion energies led to a Gr value of 372 kcal/mol.
Now, applying eq 42 leads to a semiempirical barrier estimate
of 36.7 kcal/mol for the gas-phase Menshutkin reaction, in ex-
cellent agreement with the BOVB-calculated value, 35.1 kcal/mol
(Table 4).
As was done in a hydrogen abstraction reaction (section

3.2.1),125 the MOVB approach was applied to SN2 reactions to
reduce the multiconfigurational Hamiltonian, here into an
effective two-state model,188,195 and compared to the VBSCF
approach. In the VBSCF calculation, the diabatic states Ψr

and Ψp are defined as in the following equations, where
the coefficients are optimized at each point of the reaction
coordinate:

Ψr ¼ C1ðX:�A•�•YÞ þ C2ðX:�A:þYþÞ
þ C3ðX:�AþY:�Þ ð61Þ

Ψp ¼ C4ðX•�•A :Y�Þ þ C5ðXþ :A� :Y�Þ
þ C6ðX:�Aþ :Y�Þ ð62Þ

where it is seen that Ψr and Ψp share a common ionic VB
structure, (X:�A+ :Y�), so that the VBSCF calculation is actually
a five-structure one.
In the MOVB model, both Ψr and Ψp are defined as BLW

wave functions, referred to as Ψr
MOVB and Ψp

MOVB, i.e.,

Table 3. VBSCD Parameters and Reaction Barriers for the
Identity Reaction X:� + H3C�Xf X�CH3 + X:� (X = F, Cl,
Br, I)a

VBSCD quantity F Cl Br I

Gas Phase

B 29.2 21.2 21.1 20.2

G 218.9 194.6 164.6 129.0

f 0.197 0.181 0.197 0.237

ΔEq(BOVB) 14.0 14.0 11.4 10.4

ΔEq(CCSD(T)) 11.3 13.7 10.5 9.1

Aqueous Phase

B 25.1 16.9 17.8 16.3

Gb 343.8 281.2 246.0 200.0

f 0.166 0.155 0.169 0.194

ΔEq(BOVB) 32.0 26.8 23.8 22.6

ΔEq(exptl) 31.8 26.5 23.7 23.2
a Energies in kilocalories per mole. bCalculated from the gas-phase value
through eq 67.
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represented by a single determinant (see section 2.4.1), and the
ground state is represented as a combination of the two diabatic
functions:

ΦMOVB ¼ CrΨ
MOVB
r þ CpΨ

MOVB
p ð63Þ

The MOVBmodel has been applied and compared to VBSCF
calculations with both the CDC and VDC definitions of the
diabatic states (vide supra) on the SN2 reaction shown in the
following equation using the XMVB program:108,109

H3N: þ H3C�NH3
þ f H3N

þ�CH3 þ :NH3 ð64Þ
It was shown that the CDC diabatic states from VBSCF and from
MOVB are in remarkable agreement, and the same agreement
was found for the adiabatic ground-state curve.188

However, one shortcoming of both the five-structure VBSCF
andMOVB approaches is that they do not include the long-bond
VB structure that is further needed to fully describe the four-
electron three-orbital system of the SN2 reaction, namely, the
(X•A:� •Y) structure. As a result, the reaction barrier in the
adiabatic groun- state curve is always found too large relative to
accurate calculations. To remedy this defect, the effective-Ha-
miltonian MOVB (EH-MOVB) model was proposed,195 in
which a diabatic coupling scaling factor is introduced to match
the calculated barrier with a target value.
In this model, the diabatic states are calculated in a CDC

fashion; i.e., the coefficients Cr and Cp and the orbitals ofΨr
MOVB

andΨp
MOVB in eq 63 are variationally optimized to minimize the

energy of the adiabatic ground state on each point of the reaction
coordinate. Then the adiabatic ground-state curve is recalculated
by 2�2 configuration interaction among the diabatic states, but
with a scaled off-diagonal effective Hamiltonian matrix element
H12
EH, as in the following equation:

HEH
12 ¼ βÆΨMOVB

r jHjΨMOVB
p æ ð65Þ

where β is a diabatic scaling coupling constant that is kept
invariant for all points of the reaction coordinate and is
chosen so it reproduces exactly the barrier height of a target
potential, derived either from experiment or from high-level
ab initio calculations. In addition, if the energy of the reaction is
not in good agreement with experiment, the EH-MOVB results
can be further adjusted to match experiment by shifting the
energy of the product diabatic state Ψp

MOVB. The EH-MOVB
model has been applied to the SN2 reaction (eq 66),

195 with a
scaled diabatic coupling (β in eq 65) calibrated to reproduce
the reaction barrier of a six-structure VBSCF calculation, in-
volving the full set of VB structures necessary to describe the
reaction.

HS:� þ H3C�Cl f HS�CH3 þ Cl:� ð66Þ
The shapes of the potential surfaces, diabatic as well as

adiabatic, were found to display good agreement between the
EH-MOVB and VBSCF levels.195 On the other hand, the
diabatic coupling maps were found to be qualitatively different
for the two methods.
3.2.3. SN2 Reactions in the Aqueous Phase from an

Implicit Solvent Model. The computational approaches for
the inclusion of solvation effects can roughly be divided into
two categories, one implicit and the other explicit. The PCM
model119,120 belongs to the first category and is one of the most
widely used methods in the framework of dielectric continuum
models. The recently developed VBPCM method incorporates
PCM into modern VB calculations.168 The VBPCMmethod has
an important conceptual bonus since it enables us to compute
energy profiles for the full state as well as for the individual VB
structures. In so doing, the VB calculations reveal the effect of
solvent on the constituents of the wave function, thereby provid-
ing a useful insight into the reaction in solution.
The VBPCM method, with the BOVB option, has been used

to study the identity reaction X:� + H3C�X f XCH3 + X�

Figure 7. Schematic energy levels and geometries for the Menshutkin reaction in the gas phase.

Table 4. VBSCD Parameters and Reaction Barriers for the Menshutkin Reactiona

Gr Gp G0 B(BOVB) semiempirical B ΔEq(BOVB) ΔEq(CCSD(T)) semiempiricalb ΔEq

gas phase 372.5 30.2 30.7c 35.1 36.8 36.4

water 308.3 314.6 311.2 21.4 20.9d 14.2 15.2 13.5
a Energies in kilocalories per mole. b Semiempirical reaction barriers calculated with f values taken from the identity SN2 reaction Cl:� + H3C�Cl f
Cl�CH3 + Cl:� and B values calculated through eqs 60 (gas phase) and 69 (water). c Equation 60. dEquation 69.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-010.png&w=334&h=150
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(X = F, Cl, Br, I) in aqueous solution,193 as was done for the gas-
phase reaction (vide supra). As shown in Table 3, the BOVB-
calculated barriers in the solvated phase are in excellent agree-
ment with the experimental values, within 1 kcal/mol or less. The
calculations also provide the key parameters of the VBSCD
model, such as the resonance energy B at the transition-state
geometry (see Figure 5) and the height of the crossing point of
the diabatic curves relative to the reactants. On the other hand,
the promotion gap Gr cannot be directly calculated by the
VBPCM method because the two species that form the R*
promoted state, i.e., X• and [H3C\X]�, should be solvated with
the same solvent configurations as for the ground state; that is,
they are in a state of nonequilibrium solvation, whereas the PCM
model deals only with equilibrium solvation. As such, the
promotion gap in a solvent would be underestimated if calculated
by any method coupled with a continuum solvation model.
However, the problem can be circumvented by using a semiempi-
rical nonequilibrium solvent model developed previously.196�198

In the present case, this model takes the following simple
form196�198, which estimates the promotion gap in the solvent,
Gs, from the promotion gap in the gas phase (Gg).

Gs ≈ Gg þ 2FSX� ð67Þ
where SX� is the desolvation energy of X:� and F is the solvent
reorganization factor, which can be quantified from the static and
optical dielectric constants of the solvent by

F ¼ ðε� εoptÞ=½εoptðε� 1Þ� ð68Þ
where εopt = n2 and n is the refractive index of the solvent.
With water as the solvent, the value of F is 0.56. The reor-

ganization factor takes into consideration the fact that the species
in the excited state are not solvated in their equilibrium solvent
configurations, but in the same ones as the ground-state species
beneath them, and hence, their solvation energy is downsized.
The so-calculated promotion gaps in solvent are displayed in
Table 3 and are seen to be significantly larger than their gas-phase
analogues,Gs, as expected. The f parameters in solvent are deduced
from the calculated Gg, ΔE

q, and B values. As for the gas-phase
reactions, the f parameters for the solvated reactions are found to
be somewhat constant in the series X = F, Cl, Br, slightly larger for
X = I, and in all cases larger than the corresponding values in the
gas phase (Table 3).193

Once again, one may tentatively use the parameters of the
identity reactions, this time in the aqueous phase, to make
semiempirical predictions on the barriers of solvated nonidentity

reactions. This has been done for the aqueous solutionMenshutkin
reaction,169 which displays thermochemistry and a barrier ex-
tremely different from those of the gas-phase reaction owing to
the neutral nature of the reactants and the ionic nature of the
products. As illustrated in Figure 8, the Menshutkin reaction,
which was endothermic from the reactants to the ion pair in the
gas phase by 30.7 kcal/mol,169 is exothermic by 30.1 kcal/mol
in the aqueous phase, and the two ionic products are indepen-
dently solvated.
Since there is no stable ion pair in the products in the solvated

phase, both forward and backward processes are “normal” SN2
reactions and the general eq 44 is appropriate. The promotion
energies are first estimated from their gas-phase values using the
semiempirical nonequilibrium solvation model,196,197 leading to
the G0 value (Table 4). Then, to estimate B semiempirically, one
must use eq 58 in whichD is the bonding energy of the bond that
is broken in the reactants of the exothermic reaction. This is now
the H3C�Cl bond, since the exothermic reaction is now the
forward one, in contrast to the gas-phase reaction:

BðSN2Þ ¼ ð1�Q Þ0:5DW DW ¼ DðH3C�ClÞ ð69Þ

With anMP2/6-31G* value of 83.4 kcal/mol for the C�Cl bond
energy in H3C�Cl,169 and the mean value of 0.5 forQ, one gets a
semiempirical value of 20.9 kcal/mol for B, to be compared with
the accurately calculated value of 21.4 kcal/mol (Table 4).
Finally, taking f0 = 0.155 as in the identity SN2 reaction of
chloride (Table 4), application of eq 44 leads to a semiempirical
barrier of 36.4 kcal/mol, in excellent agreement with the BOVB-
calculated value of 35.1 kcal/mol.169

The very recent VBSM valence-bond-based solvation model
(see section 2.3.2) has also been applied to the identity exchange
reaction (eq 57) and to the Menshutkin reaction (eq 59) for the
sake of comparison with the VBPCM model (section 2.3.1) and
with the SM6 model,171 the latter being used in the DFT frame-
work (hence DFT/SM6).171 For the identity reactions (eq 57),
both SM6/DFT and VBPCM/BOVB models perform well, pro-
viding free energies of activation of 25.8 and 26.1 kcal/mol, respec-
tively, to be comparedwith an experimental value of 26.5 kcal/mol.
On the other hand, all the VBSM free energies of activation for
the identity reactions were found to be too large in the VBSM
model, even at the VBSM/BOVB level, where the value was still
10 kcal/mol higher than the experimental value. By contrast, for
theMenshutkin reaction the VBSM and VBPCMmethods were
in excellent agreement. In both frameworks, the VBSCF level
was found to be inaccurate, for lack of dynamic correlation, but

Figure 8. Schematic energy levels and geometries for the Menshutkin reaction in the aqueous phase.
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at the BOVB level, both VBPCM and VBSMmethods gave free
energies of activation in excellent agreement with the SM6
calculation.
3.2.4. SN2 Reactions in the Aqueous Phase from Mo-

lecular Dynamics with Explicit Solvent Molecules. The
identity SN2 reaction Cl� + CH3Cl (eq 57) in water has been
studied by Sharir-Ivry and Shurki199 using their VB/MM model,
which employs explicit solvent molecules (see section 2.3.3).
This approach has the advantage of directly addressing none-
quilibrium solvation for the calculation of the G promotion
energy in the VBSCD model in solution. Recall that since G is
defined as the vertical excitation energy between the reactant
state R and the promoted state R* in the reactant’s geometry, the
orientation of the solventmolecules in the promoted state should
retain the original orientation as in the reactant state. While the
VBPCM model cannot compute nonequilibrium solvation, and
requires a semiempirical approximation (e.g., eq 67), the VB/
MM approach provides a direct solution by keeping the same
solvent configuration in both R and R*. The simulation system
was divided into four regions: Region I included the reacting
fragments methyl halide and the halide anion (CH3X + X�),
region II included the water molecules up to a radius of 18 Å, and
region III included water molecules that were subjected to
distance and polarization constraints according to the surface-
constrained all-atom solvent boundary condition.199 The rest of
the system was presented by a bulk region with a dielectric
constant of 80.
The VB calculations were performed at the BOVB level and

resulted in calculated aqueous solution barriers in very good
agreement with experimental values. The parameters of the
VBSCD model were also calculated and compared to those
calculated in the VBPCM solvation model. Expectedly, the G
promotion energies in solvent were found to be much larger than
the same quantities in the gas phase due to the aforementioned
effect of the nonequilibrium solvation that destabilizes R*. More-
over, the BOVB/MM-calculated G values, respectively 392, 324,
270, and 217 kcal/mol (for X = F, Cl, Br, I), were in reasonably
good agreement with the values estimated through the semi-
empirical eq 67 in the VBPCM model: 344, 281, 246, and 200
kcal/mol (Table 4). The tendencies in theG values are the same,
and the ratio of VBPCM to VB/MM values is fairly constant, ca.
1.09�1.15. This nice agreement between the semiempirical
model and the rigorous molecular dynamics with explicit solvent
molecules confirms that the former can be meaningfully applied
to the study of chemical reactions in solution.
The same identity SN2 reaction (eq 57) in water was also

studied by Mo and Gao177 using a combined VBSCF/MM and
MOVB/MM approach with explicit solvent molecules in the
same spirit as their study of a hydrogen abstraction reaction
(eq 53, section 3.2.1). The aim of the study was to test the validity
of the MOVB/MM approach and find a simple way of incorpor-
ating the solvent reaction coordinate for chemical reactions in
solution. The problem that had to be faced is that the barrier
height for simple reactions in water can be significantly altered if
the reaction coordinate excludes solvent degrees of freedom,
owing to nonequilibrium solvation effects.200 As in the study of
the hydrogen abstraction reaction,125 the adopted strategy con-
sisted of defining the reaction coordinate as the difference
between the energies of the reactant and product diabatic states
in water.
The same three resonance structures were used in both the

VBSCF and MOVB calculations, including the reactant and

product configurations, plus the zwitterionic state, Cl:� +CH3 :
Cl�. In the MOVB calculations, these structures are described as
usual in the BLW fashion (see section 2.4.1), i.e., as single Slater
determinants which are optimized independently, and the final
adiabatic ground state is calculated by a 3�3 CI calculation that
only optimizes configurational coefficients. On the other hand,
in VBSCF, the VB configurations are optimized within the full
multiconfigurational adiabatic wave function. The gas-phase
barrier and the binding energy for the ion�dipole complex were
found in good agreement with experiment at the VBSCF level,
while MOVB slightly overestimated the barrier.177

Statistical mechanical Monte Carlo simulations were per-
formed in a box containing 740 water molecules with periodic
boundary conditions. At the HF/MM level, the computed free
energy of activation was found to be in excellent agreement with
experiment, with an error of only 0.6 kcal/mol, thus confirming
the validity of the chosen solvent reaction coordinate. On the
other hand, the MOVB/MM barrier was found too large by
10 kcal/mol, attributed partly to the gas-phase difference and
partly to solvent effects. It was concluded that it is important to
optimize each VB state in the presence of all other states in a full
SCF calculation.177

Scheme 5. Spectrum of the Rumer Structures for
(a) Polyenes and (b) Polyenyl Radicals
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3.3. Excited States of Polyenes and Polyenyl Radicals
VB theory provides a powerfully intuitive tool for under-

standing the chemical bonding not only for the ground states but
also for the excited states.183 Ab initio VB theory was applied to
the ground states and the covalent states of polyenes C2nH2n+2

(n = 2�8) and polyenyl radicals C2n�1H2n+1 (n = 2�8)154 using
Rumer structures. These structures are shown in Scheme 5 and
are classified by the number of short bonds, which are π-bonds
between two neighboring atoms, and where parts a and b are for
polyenes and polyenyl radicals, respectively. Two levels, VBSCF
and VBCI, were applied to calculate excitation energies, which
are from 11Ag to 2

1Ag for polyenes and from
2B1 to

2A2 or from
2A2 to 2B1 (depending on the number of carbon atoms) for
polyenyl radicals. Two types of truncations were employed in the
calculation; one truncates the Rumer space of VBSCF level, e.g.,
VBSCF(S,D), while the other truncates the excitation space of
the VBCI level, e.g., VBCI(S,D).

The computed VB vertical excitation energies, Table 5, are in
good agreement with the MO-based method MRCI at the same
basis set. For the polyenes, the deviations of VBCISD from the
MRCI results are in the range of 0.03�0.08 eV. Compared to the
semiempirical VBDFT(s), which is a semiempirical VB method
that incorporates the DFT energy of the nonbonded reference
state,201�204 the ab initio VB values are slightly higher by 0.3�0.4
eV. For the polyenyl radicals, all the results of the three ab initio
levels, VBSCF, VBCIS, and VBCISD, are in very good mutual
agreement. At the same time, all the ab initio VB results are in
very good agreement with the corresponding VBDFT(s) data,
though the latter is just a H€uckel-type VB method. The match
between ab initio VB results with MRCI is also good. The
differences between VBCISD and the MRCI methods are in the
range of 0.03�0.06 eV.

It was found that the variation of the VBSCF excitation energy
as a function of the number of carbons in the polyene chain
follows an exponential fit:

ΔE ¼ 2:63 þ 7:848e�0:189ð2nÞ

R2 ¼ 0:99987 n ¼ 2, 3, 4, ::: ð70Þ
The intercept value of 2.63 eV at n f ∞ means that long
polyenes will have a residual energy gap, presumably due to bond
alternation. For the radical series, the VBSCF data fit as a cosine
function, which at nf ∞ converges to zero, having no residual
gap:

ΔE ¼ 5:037 cos
n� 1
2n

π R2 ¼ 0:86629 n ¼ 2, 3, 4, :::

ð71Þ
The study of the polyenes and polyenyl radicals shows that the

ab initio VB theory is able to provide numerical accuracy for
the physical properties of excited states. Additionally, the VB
wave function, which is made up of Rumer structures, enables
lucid understanding of excited-state properties, such as the
makeup of the various states and their energies and geometries,
the opposite bond alternation properties of the ground and
excited states, isomerization patterns, soliton characteristics,
etc.183

3.4. Quantitative Evaluation of Common Chemical Paradigms
3.4.1. BLW Examination of the Role of Conjugation in

the Rotational Barrier of Amides. The amide functional
group plays a fundamental role in biology as a basic building

block of proteins and enzymes. It is characterized by specific
properties such as coplanarity of the groups attached to the nitro-
gen atom, a substantial rotational barrier, and kinetic stability
toward nucleophilic attack or hydrolysis. All these properties are
readily rationalized on the basis of the most popular concept of
amide resonance by which the nitrogen atom is able to delocalize
its lone pair over the whole C, N, O π-system to gain stabiliza-
tion. This delocalization of theπ-electrons implies that the planar
amide group has to be represented by a set of three resonance
structures (Scheme 6, 1�3).
In the resonance model, the delocalization also implies the

planarity of the nitrogen group. This delocalization is disrupted
when the C�N bond is twisted as in 4, leading to a net
destabilization that accounts for the significant rotational barrier.
Other properties of the amide group, such as the shortened C�N
distance, reduced CdO stretching frequency, and reduced
nitrogen basicity, are also satisfactorily explained by the reso-
nance model, which implies contribution of structure 2 to the
ground state of the planar form.
However successful, the simple resonance picture has been

challenged by several authors,205�209 mostly on the basis of
electron population analyses, and alternative models were sug-
gested. Thus, the rotational barriers of amides have been pro-
posed to arise from carbonyl polarization,205,206 stabilizations/
destabilizations related to hybridization changes,209 and so on.
The challenge of the resonance model and the suggestion of
alternative models stirred up a significant controversy involving
theoreticians and experimentalists.210�212

Table 5. VB- and MRCI-Computed Vertical Excitation En-
ergies (eV) for Polyenes C2nH2n+2 (n = 2�8) and Polyenyl
Radicals C2n�1H2n+1 (n = 2�8) with the D95V Basis Set

n

no. of Rumer

structures VBSCF VBCIS VBCISD VBDFT(s) MRCI

2 2 6.47 6.47 6.56 6.28 6.53

3 5 5.29 5.28 5.36 5.02 5.42

4 14 4.49 4.49 4.55 4.19 4.60

5 42 3.95 3.94 4.00 3.63 4.07

6 132 3.56 3.55 3.60a 3.32 3.68

7 429 3.27 3.26b 2.93

8 225a 3.06a 2.70

2 2 3.21 3.21 3.26 3.26 3.29

3 5 2.54 2.53 2.57 2.49 2.62

4 14 2.07 2.07 2.10 2.01 2.16

5 42 1.76 1.75 1.78 1.68 1.84

6 132 1.53 1.53 1.58 1.45 1.61

7 429 1.40 1.41b 1.44b 1.29

8 120b 1.27b 1.19b 1.16
aVB(S,D) type. bVB(S) type.

Scheme 6. VBResonance Structures for Planar Amide (1�3)
and Rotated Amide (4)
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We note that all the arguments that have been invoked either
in favor of or in opposition to the resonance model are somewhat
indirect, since they deal with probes such as charge distributions,
Fermi correlation, or bond length changes upon C�N rotation.
At the same time, the crucial quantity that is needed to test
the resonance model is the delocalization energy (DE), which
presumably accounts for the disputed origins of the rotational
barrier. In fact, the validity of the resonancemodel can be directly
tested by means of VB methods. Thus, the stabilization brought
by the delocalization of the nitrogen lone pair in planar amide is
estimated by comparing the energy of the fully delocalized
ground state to that of a localized state in which the lone pair
is constrained to remain on the nitrogen atom. The BLWmethod
(vide supra) offers quick and reliable DE values. At the Hartree�
Fock level, these two states are designated as ΦRHF and Φloc

BLW,
respectively. Thus, DE is given by

DE ¼ EðΦBLW
loc Þ � EðΦRHFÞ ð72Þ

Here DE provides the vertical delocalization energy if both
calculations are performed in the geometry of the delocalized
ground stateΦRHF. Note that all orbitals inΦloc

BLW, except for the
nitrogen lone pair, are free to delocalize over the entire molecule.
In this manner, the DE takes into account the inductive effects
and the polarities of the various bonds, including the C�O
π-bond.
The BLW-HF method was used by Lauvergnat et al. to cal-

culate delocalization energies in formamide and thioformamide213

with the aim of providing a quantitative answer to the following
questions: (i) How much does the delocalization of the nitro-
gen’s lone pair over the carbonyl or thiocarbonyl group stabilize
the planar forms of amides relative to the twisted forms? (ii)
Does the resonance model fully account for the rotational
barrier of amides? (iii) Why is the rotational barrier of thio-
formamide larger than that of formamide? Using the 6-311G**
basis set, Lauvergnat et al. found vertical delocalization energies
of 27.3 and 37.6 kcal/mol, respectively, for formamide and
thioformamide, indicative of a strong delocalization of the lone
nitrogen pair in both molecules. These values were subsequently
confirmed by Mo et al. in a similar study extended to seleno-
formamide, SeCHNH2, and the planar forms of formamidine,
NHCHNH2, and vinylamine, CH2CHNH2, yielding vertical
delocalization energies of 37.6, 25.5, and 19.1 kcal/mol, respec-
tively, for these three compounds.214 Using the BLW method in
conjunction with DFT, thus dynamic correlation taken into
account, increases the vertical delocalization energies of forma-
mide and thioformamide by ca. 4 and 2 kcal/mol, respectively.179

Of course, the large vertical delocalization energies cannot be
directly compared to the rotational barriers around the C�N
bond because (i) the nitrogen lone pair also delocalizes in the
rotated geometry 4 and (ii) the rotated form is stabilized by
pyramidalization at nitrogen and more generally by geometry
relaxation. Using the BLW-HF technique, the vertical delocaliza-
tion energy of the rotated forms was estimated to be 12.4 and
10.2 kcal/mol, respectively, for formamide and thioamide.213

These values, which correspond to hyperconjugation, are clearly
smaller than in the planar form but not negligible.
The contribution of nitrogen lone pair delocalization to the

rotational barriers is best elucidated by considering adiabatic
delocalization energies, calculated through eq 72 using optimized
geometries for both Φloc

BLW and ΦRHF. Comparison of the
adiabatic DEs for the unrotated and rotated forms shows that

the delocalization of the nitrogen lone pair stabilizes the un-
rotated conformation more than the rotated one by 7.3 kcal/mol
for formamide vs 13.7 kcal/mol for thioformamide. Thus, the
resonance stabilization of the planar conformers is responsible
for about half of the rotational barrier of formamide and two-
thirds of that of thioformamide. The larger rotational barrier of
thioformamide is therefore due to a greater importance of
conjugation effects relative to those of formamide.
These results demonstrate that conjugation of the π-electrons

is an important feature of the electronic structure of amides and
thioamides and that the nitrogen lone pair is significantly
delocalized over the (thio)carbonyl group. All in all, the BLW
calculations support the qualitative resonance model and show
that even if resonance stabilization is not the sole factor respon-
sible for the rotational barriers, it is still a significant one.
3.4.2. VBSCF Application to Through-Bond versus

Through-Space Coupling in 1,3-Dehydrobenzene. 1,3-De-
hydrobenzene (m-benzyne, 5 in Scheme 7) is a singlet diradical
that owes its stability relative to the triplet state to a weak bonding
between the carbons C1 and C3. Although it was generally
assumed that most of the bonding between these two carbons is
due to direct, through-space (TS) interactions, the possibility of an
additional contribution from through-bond (TB) interactions was
raised by Hoffmann.215 More recently, Winkler and Sander also
concluded, on the basis of topological and NBO analyses, that the
C2�H, C1�C2, and C2�C3 bonds mediate the interactions
between C1 and C3.

216

To distinguish and quantify the respective contributions of TB
and TS to the singlet�triplet gap, Borden et al. carried out VB-
type calculations on 5.217 For the singlet state, the calculations
are of the VBSCF/BDO type; i.e., a single formally covalent VB
structure is written to describe the C1�C3 bonds, but the orbitals
are allowed to delocalize over only the C1 and C3 centers. As is
well-known,1�3,183,218,219 VB wave functions of this type impli-
citly take into account the ionic component of the bond, owing to
the partial delocalization of the orbitals. The pure TS interaction
is described as a singlet coupling between two BDOs, j1 and j3,
as in 1Ψbdo

VB :

1ΨVB
bdo ¼ jj1j̅3 � j̅1j3j j1 ¼ ϕ1 þ εϕ3

j3 ¼ ϕ3 þ εϕ1 ð73Þ
where ϕ1 and ϕ3 are the pure AOs of C1 and C3 involved in the
TS interaction (see Scheme 7) and j1 and j3 are allowed to
delocalize on C1 and C3 but not on the other atoms. In this
manner, 1Ψbdo

VB does not contain any contribution from any
atoms other than C1 or C3, and it is therefore devoid of any TB
interaction. On the other hand, 1Ψfull

GVB allows full delocalization
of the GVB pair (j1, j3) over the entire molecule, as in the
standard GVB method that uses OEOs:

Scheme 7. 1,3-Dehydrobenzenea

a ϕ1 and ϕ3 are pure in-plane atomic orbitals.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-014.jpg&w=99&h=73


T dx.doi.org/10.1021/cr100228r |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

1ΨGVB
full ¼ jj1j̅3 � j̅1j3j
j1 ¼ ϕ1 þ εϕ3 þ ε, ϕi þ :::

j3 ¼ ϕ3 þ εϕ1 þ ε, ϕi þ ::: ð74Þ
Thus, 1Ψfull

GVB now contains both TS and TB interactions.
An analogous use of partially delocalized “atomic” orbitals and

OEOs allows calculation of triplet states with or without inclu-
sion of TB interactions. Thus, it was possible to calculate
adiabatic singlet�triplet gaps by taking only TS interactions into
account or by including both TS and TB interactions, leading to
ΔES�T(TS) and ΔES�T(TS+TB), respectively.
In the CCSD(T)/cc-pVTZ-optimized geometry, a value of 4.7

kcal/mol was found for ΔES�T(TS), as compared to a total
singlet�triplet gapΔES�T(TS+TB) of 9.9 kcal/mol. Thus, it was
concluded that the stabilization provided by TB interactions
contributes 10% more than the stabilization provided by the TS
interactions to the adiabatic singlet�triplet energy difference, at least
at this level of VB calculation, which only takes nondynamic cor-
relation into account. However, it was found that dynamic correla-
tion is rather important, as it increases the adiabatic singlet�triplet
gap by 11 kcal/mol relative to the previous calculation,217 so that
the question of the precise contributions of TS vs TB interactions
remains somewhat open. BOVB calculations that take dynamic
correlation into account may resolve this issue.

3.5. Direct Estimate of Hyperconjugation Energies by VBSCF
and BLW Methods
3.5.1. Magnitude of Hyperconjugation in Ethane. The

hindered rotation about the carbon�carbon bonds in organic
compounds is a common phenomenon in conformational anal-
ysis. Taking ethane as a prototypical example, the barrier to
rotation has been traditionally attributed to Pauli exchange
repulsions, or steric hindrance, between the vicinal C�H bonds.
However, this simple picture has been questioned in a number of
theoretical studies, on the basis of natural bond orbital (NBO)
analyses. It was suggested that, contrary to intuition, electrostatic
and Pauli repulsions actually favor the eclipsed conformation,
while the preferred staggered conformation is due to hypercon-
jugative interactions between the methyl groups.220�222 This
proposal stirred a controversy223�225 and led Bickelhaupt and
Baerends to evaluate the Pauli and electrostatic interactions
explicitly using the aforementioned EDA method, with a zer-
oth-order wave function constructed from fragment orbitals of
the methyl groups. They concluded that although hyperconjuga-
tion favors the staggered conformer, Pauli exchange repulsions
are the dominant force responsible for the rotational barrier in
ethane.223 Another quantitative estimate was proposed by Mo
et al.224,226,227 using VB theory which directly evaluates the
stabilizing effect of hyperconjugation (Scheme 8).
In VB theory, hyperconjugation in ethane is expressed as a

resonance between the main VB structure, involving one C�C
and six C�H single bonds, and a group of 18 VB structures
displaying a CdC double bond and one proton in one methyl
group and a hydride in the other (see Scheme 8). Removing these
18 VB structures from the VB calculation defines a reference
state Φloc

VB which is devoid of hyperconjugation. Accordingly,
the hyperconjugative stabilization energy Ehc

VB is defined as the
energy difference betweenΦloc

VB and the ground stateΦGS
VB, which

includes all the VB structures:

EVBhc ¼ EðΦVB
locÞ � EðΦVB

GSÞ ð75Þ

The VB calculations have been performed at the VBSCF level.226

With the best basis set, the calculated hyperconjugative stabiliza-
tions amount to 13.1 kcal/mol for the staggered form and 12.1
kcal/mol for the eclipsed one, thus favoring the staggered
conformation by 1.0 kcal/mol. It should be noted that these
estimates are much smaller than the hyperconjugative stabiliza-
tions calculated by the NBO methods, respectively 27.7 and
23.0 kcal/mol for the staggered and eclipsed forms.221 This large
difference between the BLW and NBO estimations has been
interpreted by Mo and Gao.226 In the NBO analysis, the anti-
bonding methyl orbitals are deleted but the remaining orbitals,
which form the localized state, are not reoptimized after this dele-
tion. This tends to exaggerate the energy difference between the
localized and delocalized states, thus overestimating the hyper-
conjugation stabilizations. By contrast, the orbitals of the refer-
ence state are reoptimized in the VBSCF calculation, which
therefore leads to smaller values.
The contribution of hyperconjugation to the rotational barrier

of ethane has also been investigated by the BLW method. Thus,
to quantitatively estimate the stabilization energy of hyperconju-
gation effects, it is necessary to know the energy of the hypothe-
tical ethane reference that has no hyperconjugative interactions.
Such a reference system is BLW-computed by preventing
electron delocalization between vicinal methyl groups. Using
symmetry-adapted group orbitals, only the e-symmetric orbitals
of the methyl groups are relevant to the barrier since the other
orbitals, of a-symmetry, are invariant to rotation. The e-sym-
metric bonding orbitals of the left carbon are represented in
Figure 9, labeled as πx1 and πy1, together with their antibonding
counterparts, πx1* and πy1*.
Of course, identical orbitals (not shown in Figure 9) exist on

the right carbon, labeled as πx2, πy2, πx2*, and πy2*. During the
BLW procedure, the occupied orbitals of the methyl groups are
optimized but kept fully localized on their specific methyl groups,
leading to the wave functionΦloc

BLW in which hyperconjugation is
“turned off”:

ΦBLW
loc ¼ ð...Þðπx1Þ2ðπy1Þ2ðπx2Þ2ðπy2Þ2 ð76Þ

On the other hand, using the standard RHF method allows
delocalization to take place during the orbital optimization and
leads to e-symmetric bonding and antibonding delocalized
molecular orbitals, labeled as ex, ey, ex*, and ey*, which are the

Scheme 8. Resonance Structures Which Contribute to
Hyperconjugation in Ethane

Figure 9. Some of the e-symmetric CH3 group orbitals of ethane.
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components of the RHF wave function ΦRHF:

ΦRHF ¼ ð...ÞðexÞ2ðeyÞ2ðex�Þ2ðey�Þ2 ð77Þ
Since vicinal hyperconjugation is fully at work in ΦRHF and
absent in Φloc

BLW, the stabilization resulting from hyperconjuga-
tion is defined as

EBLWhc ¼ EðΦBLW
loc Þ � EðΦRHFÞ ð78Þ

The BLW and RHF calculations were performed using the
same basis sets as for VBSCF and proved little basis-set
dependency.224,226 As a result, hyperconjugation was found to
favor the staggered conformation by 0.76�0.84 kcal/mol, de-
pending on the basis set, at the BLW-RHF level (eq 78) and by
0.90�0.98 kcal/mol at the VBSCF level (eq 75). By comparison,
the total preference of ethane for the staggered conformation
relative to the eclipsed one, all effects included, amounts to
3.0 kcal/mol, as calculated at the RHF level. Thus, both VBSCF
and BLW methods converge to the same conclusion that hyper-
conjugation accounts for about 25�33% of the total rotational
barrier in ethane. The rest can be entirely attributed to steric
hindrance, which represents the collective contributions from the
Pauli exchange repulsion and electrostatic interactions between
the vicinal methyl groups. This conclusion, which is based on a
direct estimation of hyperconjugative effects, is in agreement
with the deduction of Bickelhaupt and Baerends,223 based on an
estimation of Pauli and electrostatic interactions, and brings
quantitative support to the traditional view about the rotational
barrier in ethane.
3.5.2. Physical Origin of the Saytzeff Rule. Alkene

formation during elimination reactions is known to proceed by
the preferential removal of the β-hydrogen from the carbon that
has the smallest number of hydrogens. This statement, known as
Saytzeff’s rule,228 is illustrated in Scheme 9 using two different
alcohols.229,230

The Saytzeff rule is generally confirmed by experiment, but
different textbooks give different interpretations for the physical
reason behind the observed selectivities and/or alkene stabilities.
A common interpretation231 rests on the hyperconjugation be-
tween the highest occupied orbital of the alkyl fragment and
the π- and π*-MOs of the C�C double bond, which thereby
stabilizes the more substituted double bond. On the other hand,
an alternative explanation is based on the hybridization effect
on the strengths of the C�C bonds.232 Thus, an sp2�sp3 C�C
bond is stronger than an sp3�sp3 C�C bond, and the more the
alkene is substituted, the higher the ratio of sp2�sp3 C�C bonds
to sp3�sp3 C�C bonds. Note that this explanation does not
take into account the effect of hybridization on the C�H
bonds, which acts in the opposite direction, as will be discussed
below. Finally, inductive effects and steric repulsions must also be
considered.
Since hyperconjugation and hybridization effects are the most

frequently invoked explanations, Braida et al.233 quantified them
independently by use of the BLW and VBSCF methods, which
allow hyperconjugation to be turned “on” or “off”. The ab initio
calculations deal with the products of reactions in Scheme 9 to
understand the origin of their different relative stabilities.
Let us discuss in detail the reasons why the most substituted

isomers are more stable than the less substituted ones. When
going from CH3CHdCRCH3 to CH2dCREt, the following
stabilizing/destabilizing effects are taking place:
(i) Loss of hyperconjugation, ΔE > 0.

(ii) Csp3�H f Csp2�H, ΔE < 0.
(iii) Csp2�CH3 f Csp3�CH3, ΔE > 0.
(iv) π-Polarization in CH2dCREt, ΔE < 0.
(v) Other effects (strain, σ-inductive effects, etc.)
Hyperconjugation was first estimated by BLW calculations.

The state with delocalization on is simply the RHFwave function
of the alkene,ΦRHF. The state with π-delocalization off isΦloc

BLW.
In accord, the hyperconjugation energy,Ehc

BLW, can be estimated
by eq 78 as in the preceding section.
The BLW results233 show that localizing the orbitals of one

methyl group raises the energy by 6.0( 0.1 kcal/mol, no matter
which methyl group is chosen. Furthermore, hyperconjugation
effects of the various methyl groups are nearly additive and
independent of each other. The hyperconjugative stabilization
energy of an ethyl group, for both 8 and 10, is estimated to be
close, ca. 6.4 kcal/mol. It follows that, for both C4H8 and C5H10,
hyperconjugation effects stabilize the most substituted product
by about 6 kcal/mol, which is significantly more than the actual
thermodynamic preference expressed by Saytzeff’s rule, respec-
tively 2.6 and 1.1 kcal/mol for eqs 79 and 80 in Scheme 9 at the
RHF level at 0 K (experimentally 2.4 and 1.5 kcal/mol at 298 K).
It is therefore concluded that the other effects, listed above,
neatly operate in the anti-Saytzeff direction.
The effects of C�C and C�H hybridization changes (items ii

and iii above) were estimated from calculated or experimentally
measured dissociation energies of simple reactions, i.e., extrusion
of hydrogen from methane and from ethane and extrusion of
methyl from ethane and from propene (removing the hypercon-
jugative effect in the latter case). At the G3 (0 K) computational
level, the following results were obtained:

Csp3�H f Csp2�H ΔE ¼ � 5:9 kcal=mol ð81Þ

Csp2�CH3 f Csp3�CH3 ΔE ¼ 4:8 kcal=mol ð82Þ
As both hybridization changes take place as one shifts from the
most substituted alkene to the less substituted one, it follows that
hybridization effects destabilize the former isomer by 1.1 kcal/mol.
Experimental measurements at 298 K yield a destabilization of the
same order of magnitude, 0.7 kcal/mol.233 Thus, the hybridization
effects do not account for the Saytzeff rule, but contribute an
anti-Saytzeff effect that slightly lowers the hyperconjugative
effects.
Another effect that may possibly play a role in the relative

stabilities of isomers is the polarization of the π-bond by the
π-donor substituents. The π-polarization can be turned on and off
using VBSCF with BDOs. In this brand of VB theory, the bond

Scheme 9. Product Distributions for Some Acid-Catalyzed
E1 Eliminations of H2O from Secondary (Eq 79) and Tertiary
(Eq 80) Alcohols

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-017.png&w=240&h=87


V dx.doi.org/10.1021/cr100228r |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

under study (here the π-bond) is described as a singlet-coupled
interaction between two BDOs,j1 andj2, that form a bond pair.
Thus, the ground state with π-polarization on is represented by
the wave function Ψpol

on :
Ψon

pol ¼ j... ψψ̅ ... ðj1j2 � j1j2Þj ð83Þ
in which the orbitals j1 and j2 are not equivalent, owing to
polarization. It is therefore straightforward to turn the polariza-
tion off by averaging j1 and j2 as in the wave function Ψpol

off :

Ψoff
pol ¼ j ... ψψ̅ ... ðjav

1 j
av
2 � jav

1 j
av
2 Þj ð84Þ

where j1
av and j2

av are mirror images of each other and are
obtained by averaging the expressions ofj1 andj2. Accordingly,
the stabilization energy due toπ-polarization is simply the energy
difference between Ψpol

off and Ψpol
on . As a result, it turns out that

π-polarization is a weakly stabilizing factor, accounting for 0.3
kcal/mol stabilization of 8 relative to 6 and 0.4 kcal/mol sta-
bilization of 10 relative to 9. Thus, this effect too slightly favors
the anti-Saytzeff products.
Summing up the calculated effects of hyperconjugation, hy-

bridization changes, and π-polarization, these cumulated effects
favor 8 over 6 by 4.45 kcal/mol and 10 over 9 by 4.55 kcal/mol,
which are more than the actual stability differences as calculated
at the G3 (0 K) level, respectively 2.42 and 1.20 kcal/mol (see
Table 6). This means that the remaining effects, σ-polarization
and steric effects, amount to 2�3 kcal/mol and act in the anti-
Saytzeff direction.
In summary, it appears that the Saytzeff rule is entirely governed

by hyperconjugation between the π-bond and the π-donating
substituents, whereas all other factors have a smaller opposite effect.
3.5.3. Tetrahedranyltetrahedrane. The shortest C�C

single bond ever in a noncyclic saturated hydrocarbon was
experimentally characterized by Tanaka and Sekiguchi234 in
2005 in tetrahedranyltetrahedrane, a dimer of tetrahedranyl
radicals (Scheme 10). The bond length of 1.436 Å is 0.091 Å
shorter than the C�C bond in ethane at the RHF/6-311+G**
level. Knowing that the greater the s character in hybrid atomic
orbitals, the shorter the bond between such hybrids, Tanaka and
Sekiguchi ascribed the very short bond length to the high s char-
acter of the exocyclic bond, as could be deduced from the CCC
angles in this highly strained molecule. However, an alternative
explanation is the partial double bond character in this C�C
bond due to the hyperconjugative interactions between the two
tetrahedranyl groups.
As in the case of ethane, the study of hyperconjugative

interactions in tetrahedranyltetrahedrane was carried out by
Mo235 using the BLW-RHF method, which deactivates hyper-
conjugation by confining the electrons in localized orbitals of
one tetrahedranyl group or the other. Only e-symmetric
orbitals were localized in the BLW wave function,Φloc

BLW, since
these are the only orbitals capable of hyperconjugation. As
there are eight e-symmetric group orbitals on each group,
labeled 1e1�8e1 and 1e2�8e2, respectively, for the left and
right groups, the block-localized wave function, which is
devoid of hyperconjugation, reads as in the following equation:

ΦBLW
loc ¼ ð...Þð1e1�8e1Þð1e2�8e2Þ ð85Þ

On the other hand, the RHF wave function that describes the
ground state involves the fully delocalized e-symmetric orbi-
tals, labeled 1e�16e, as in the following equation:

ΦRHF ¼ ð...Þð1e�16eÞ ð86Þ

At the optimized geometry of the molecule, the difference
between Φloc

BLWand ΦRHF is 15.2 kcal/mol for the staggered
conformer vs 14.1 kcal/mol for the eclipsed one in the 6-311
+G** basis set. This difference of 1.1 kcal/mol is notably
smaller than the rotational barrier of 3.0 kcal/mol, leading to
the conclusion that hyperconjugation differences contribute
only slightly to the rotational barrier of tetrahedranyl-
tetrahedrane.
To probe the influence of hyperconjugation on the central

C�C bond length, the geometry of the molecule was optimized
for theΦloc

BLW pseudostate in which hyperconjugation is turned
off. The C�C distance was found to be 1.491 Å at the BLW/6-
311+G** level, in comparison with the actual distance of 1.436
Å in the molecule calculated at the RHF/6-311+G** level.
Thus, Mo concluded that the stabilizing hyperconjugation
effect shortens the central C�C bond in tetrahedranyltetrahe-
drane by 0.055 Å. However, the same author performed
analogous calculations on ethane and found that hyperconjuga-
tion effects also shorten the C�C bond in ethane by 0.040 Å,
which suggests that hypercoordination in tetrahedranyltetrahe-
drane is not outstanding relative to that of other saturated
hydrocarbons and explains only partly the short central C�C
bond length. Thus, the rest of the C�C bond length difference
compared with ethane, 0.076 Å, was ascribed to the much larger
s character that is found in the exocyclic hybrid orbitals of the
tetrahedranyl groups as compared to the methyl groups in
ethane. It is interesting to point out that the very same
conclusion has been made on the basis of MO-based energy
decomposition analysis.236 It is gratifying to see that MO and
VB methods come to the same conclusion when it comes to the
interpretation of unusual bonding situations.

3.6. VBSCF and BLW Applications to Aromaticity
Aromaticity is a central issue in chemistry. VB theory defines the

stability associated with this property in terms of the resonance
energy (RE), whichmeasures themagnitude of contributions from
resonance structures other than the principal Lewis structure
to the ground state of a conjugated molecule.237 SC VB calcula-
tions were used to estimate the REs for benzene,38,238�242

cyclobutadiene,239,240 distorted benzene,243pyrene derivatives,244,245

Table 6. Summary of the Various Effects That Contribute to
the Thermodynamic Difference between the Saytzeff Pro-
ducts (6, 9) and the Anti-SaytzeffProducts (8, 10) in Scheme 9

6 f 8 9 f 10

hyperconjugation 5.8 6.1

hybridization changes �1.1 �1.1

π-polarization �0.3 �0.4a

other effectsa �2.0 �3.4

totalb 2.4 1.2
aThese include π-polarization and steric effects. bCalculated at the G3
(0 K) level.

Scheme 10. Tetrahedranyltetrahedrane Molecule
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the H6 cluster,
246 and so on. Similarly, classical VB calculations,

including all VB covalent and ionic structures, were also employed
for the same purpose.247�249 A disadvantage of the SC method
is that a given formally covalent structure implicitly contains
some minor components from other structures, due to the semi-
delocalized nature of the AOs that are employed, so that the
definition of a reference structure for the calculation of RE is
ambiguous. Here we will describe a few applications of the VBSCF
and BLW methods, which have been shown to provide compar-
able values for the REs.242

3.6.1. Energetic Measure of Aromaticity and Antiaro-
maticity. The first easy-to-apply method to estimate the RE in
the classical VB spirit is due to Kollmar128 and consists of con-
structing the reference nonconjugated VB structure by replac-
ing its π-MOs by a set of strictly two-center-localized ethylenic
MOs, each taken from an RHF calculation of ethylene having the
appropriate C�C bond length.128 Calculations of REs using this
simple technique were reviewed in 2001, along with VBSCF-
computed and Kollmar’s computed values.249

The BLW method123�127 (see section 2.4.1) improves on
Kollmar’s method by optimizing the orbitals of the nonconju-
gated VB structure. At this point it is useful to define249 the
various quantities that are associated with resonance and aroma-
ticity and that are sometimes mixed up in the literature. The
“vertical resonance energy” (VRE) stands for the Pauling�Whe-
land RE of a conjugated molecule, calculated by taking both the
ground state and themost stable VB structure in the ground-state
geometry. On the other hand, the “adiabatic resonance energy”
(ARE) is calculated by taking these two states each in their own
optimal geometry. Finally, the “extra cyclic resonance energy”
(ECRE) measures the extra stabilization of conjugated rings
with respect to an appropriate acyclic conjugated system which
is taken as the nonaromatic reference. The ECRE is known
also as the thermochemical resonance energy.249 Thus, ECRE is
expected to be positive for aromatic systems and negative for
antiaromatic ones. All these quantities can be readily estimated
by means of valence bond calculations.
Mo and Schleyer found a VRE for benzene of 91.6 kcal/mol at

the BLW-RHF level,250 in the 6-311+G** basis set, a value which
is comparable to 86 kcal/mol calculatedwith theKollmarmethod249

using the 6-31G basis set. On the other hand, a much smaller value
was found for the VRE of rectangular cyclobutadiene, as expected,
only 10.9 kcal/mol,250 compared with 22 kcal//mol for square
cyclobutadiene with VBSCF.249

Mo and Schleyer also used the BLW-RHF method to
calculate AREs.250 For benzene, the geometry-optimized non-
conjugated VB structure, the so-called “1,3,5-cyclohexatriene”, was
found to display alternated bond lengths of 1.319 and 1.522 Å,
to be compared with the regular bond lengths of 1.386 Å for ben-
zene at the RHF level. AREs of 57.5 and 10.3 kcal/mol were
calculated for benzene and cyclobutadiene, respectively. Thus,
the very different values of the AREs for benzene and cyclobu-
tadiene reflect their fundamental difference in terms of aroma-
ticity/antiaromaticity. More quantitatively, the stabilization/
destabilization energies associated with these concepts are best
estimated by the ECRE, defined as

ECREðCMÞ ¼ AREðCMÞ � AREðRefÞ ð87Þ

where CM is the cyclic conjugated molecule under study and
Ref is an acyclic conjugated molecule taken as a reference non-
aromatic system. This reference molecule is a linear polyene

that can be chosen as having the same number of double bonds
as the cyclic molecule (i.e., trans-1,3,5-hexatriene for benzene)249

or the same number of diene conjugations (i.e., trans-1,3,5,7-
octatetraene for benzene). The first model is referred to as
ECRE1, while the second model, generally considered as more
meaningful than the former for neutral systems,251 is referred to
as ECRE2. Note that the ECRE2 model defines a reference
molecule that has two more atoms than in the cyclic molecule.
Whatever the nonaromatic reference that is chosen, the ECRE
is similar in spirit to the well-known “aromatic stabilization
energy” (ASE), an experimental quantity that is taken as a
measurement of the extra stabilization of a cyclic molecule in
excess of the RE of analogous acyclic conjugated systems.
For benzene, the experimental endothermicity of reaction 88
has been proposed252 to estimate the ASE, which amounts to
28.8 kcal/mol.

On the side of VB calculations, the ECRE1 and ECRE2 values
for benzene, as calculated at the BLW-RHF/6-311+G** level,250

amount to 36.7 and 25.7 kcal/mol, respectively, suggesting that
ECRE2 is indeed more relevant than ECRE1. For cyclobuta-
diene, ECRE1 is close to zero at the BLW-RHF level, while
ECRE2 is definitely negative, �10.5 kcal/mol, thus reflecting
very well the antiaromaticity of cyclobutadiene and further
establishing ECRE2 as the best energetic criterion for aromaticity
of neutral molecules. For ionic systems the ECRE1 model works
better, since ECRE2 has the inconvenience of defining an acyclic
reference that has more atoms than in the cyclic molecule. This
feature, which is of no concern in the neutral system, introduces a
bias in ionic systems owing to greater stabilization in the acyclic
reference due to better charge delocalization.
The BLW-RHF method was further used to calculate the

various resonance energies (VRE, ARE, and ECRE) of a series of
twelve five-membered rings C4H4X (X = AlH, BH, CH+, CH2,
NH, O, PH, S, SiH+, SiH�, SiH2).

250 The ECRE values were
systematically compared to the magnetic criterion for aromati-
city, the “nucleus-independent chemical shift” (NICS), which is
known to be negative for aromatic systems and positive for
antiaromatic ones. As a result, ECRE2 values were found to
better correlate than ECRE1 withNICS values, with a correlation
coefficient of 0.95. This and the above results for benzene tend to
demonstrate that acyclic references with the same kind and
numbers of single bonds between the π-units measure aro-
maticity better than references having the same number of
π-electrons. In particular, negative (positive) NICS values
correlate with positive (negative) ECRE2 values in all cases.
Accordingly, the ECRE2 values for cyclopentadiene cation and
anion are �35.4 and 19.1 kcal/mol, with 46.9 and �13.7 ppm
NICS values, respectively.
Thus, it is seen that VB calculations can complement the

often-used magnetic criterion for aromaticity with an energetic
criterion, which has the advantage of providing stabilization
energies of direct chemical interest.
3.6.2. Cyclopropane: Theoretical Study of σ-Aromati-

city. The concept of σ-aromaticity was first proposed by
Dewar253 in 1979 to explain the surprisingly small conventional
strain energy of cyclopropane, only 27.5 kcal/mol, practically the
same as the strain energy of cyclobutane despite the larger CCC
angles in the latter. Extending the H€uckel rule originally
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proposed for π-systems, Dewar suggested that rings with 4n + 2
skeletal electrons, such as cyclopropane, are stabilized by
σ-aromaticity while those with 4n electrons are σ-antiaromatic
and destabilized. Since then, the concept of σ-aromaticity has
been extended to many other systems and is now well estab-
lished, but the question remains of whether cyclopropane indeed
follows this paradigm. In fact, there is a large discrepancy in
estimates of the σ-aromatic stabilization energy of cyclopropane,
ranging from 55.1 kcal/mol254 to 5.0 kcal/mol,255,256 and even
in the conclusion that “There is no need to invoke σ-aromat-
icity to explain the thermochemistry of cyclopropane.”257

However, as all these estimations were indirect, Wu, Schleyer,
and Mo (WSM) recently used the ab initio VBSCF method to
get direct estimations of the stabilization due to σ-aromaticity
in cyclopropane.258

As in other applications (vide supra), the method utilized by
WSM takes advantage of the ability of the VB method to turn
electronic delocalization off or on. Note that there are two kinds
of delocalization modes in cyclopropane: (i) in-plane delocaliza-
tion of the σ-orbitals of the CH2 groups and (ii) out-of-plane
delocalization among the set of π-like CH2 group orbitals. The
stabilization energies arising from these two types of delocaliza-
tion are referred to as REσ and REπ, respectively.
A semilocalized wave function of the VBSCF type in which σ-

delocalization is turned off is defined as in the following equation,
dropping the spin function:

Φσ
loc ¼ ÂðΩCΩ

σ
locΩ

π
delÞ ð89Þ

where ΩC refers to the core orbitals, Ωloc
σ is a direct product of

BDOs that are constrained to be localized on a given CH2 group,
and Ωdel

π is a product of π-BDOs that are allowed to delocalize
freely over the molecule.
A similar definition is used for a semilocalized wave function

where π-delocalization is turned off:

Φπ
loc ¼ ÂðΩCΩ

σ
delΩ

π
locÞ ð90Þ

Finally, Φloc
σ+π is a fully localized wave function in which both

σ- and π-delocalizations are turned off. With these definitions,
the delocalization energies REσ and REπ are defined as in eqs 91
and 92,

REσ ¼ Φσ
loc �Φσ þ π

loc ð91Þ

REπ ¼ Φπ
loc �Φσ þ π

loc ð92Þ
respectively. The VBSCF/cc-pVDZ-calculated values for REσ

and REπ are 12.5 and 10.2 kcal/mol, respectively. While these
values might appear significant, it must be kept in mind that
similar delocalization energies due to hyperconjugative interac-
tions exist even in acyclic alkanes such as ethane224,226 (see
section 3.5.1). Consequently, the ECRE, defined as the RE
difference between the cyclic aromatic compound and its appro-
priate acyclic reference, is more suitable for evaluating the
σ-aromaticity. The selection of the acyclic reference can be based
either on having the same number of carbons (i.e., propane,
giving ECRE1) or on having the same number of C�C bonds
(i.e., butane, giving ECRE2). In both cases, the extra cyclic
delocalization energy of propane is found to be quite small, with
ECRE1 values of 3.5 and 1.8 kcal/mol, respectively, for σ- and
π-delocalization, and even slightly negative ECRE2 values,
�0.7 and �2.7 kcal/mol.258

It is concluded that the extra σ-stabilization energy
(at most 3.5 kcal/mol) is far too small to explain the small
difference in strain energy between cyclopropane (27.5 kcal/
mol) and cyclobutane (26.5 kcal/mol) by σ-aromaticity. Thus,
there is no need to invoke σ-aromaticity for cyclopropane
energetically.

3.7. Electronic Structure of Conjugated Molecules
The weights of the various resonance structures in a con-

jugated molecule can be reliably assessed using ab initio VB
theory by applying Chirgwin�Coulson’s formula (eq 8 in section
2.1) or the alternative L€owdin definition.138 As the various VB
structures are nonorthogonal within the classical VB scheme,
both these definitions contain some overlap terms (MKL in eq 8)
that must be partitioned between the various VB structures,
hence the difference in weights between the various formulas
when the overlap is large. To get rid of this defect, some authors
have proposed to perform the VB analysis in terms of VB struc-
tures defined with orthogonalized atomic orbitals.83,259 These
orbitals, called “nearly atomic molecular orbitals” (NAMOs)83 or
“orthogonalized atomic orbitals” (OAOs),260 are each mainly
centered on a single atom but have tails, which ensure orthog-
onality, on other atoms. The advantages and disadvantages of
the orthogonal VB approach have been discussed by Angeli
et al. in a recent paper.260 As an advantage, the ambiguity
attached to the partitioning of overlap terms is avoided since the
VB structures are mutually orthogonal. Furthermore, this meth-
odmakes the orthogonal VB reading of a CASSCFwave function
very easy and cost-efficient.83 On the other hand, one disad-
vantage is that the covalent VB structures defined with ortho-
gonal NAMOs are always repulsive,261 in contrast to classical
VB which views covalent interactions as strongly bonding in the
majority of cases, in accord with chemical wisdom. Thus, the
definition of the VB structures in terms of purely local AOs or
HAOs, as is done in classical VB, is closer to the chemists’s
language. Furthermore, classical VB guarantees a nonambiguous
correspondence between the VB wave function and the intuitive
Lewis structures, owing to the absence of delocalization tails in
the HAOs.

A number of authors have performed such analyses of ab initio
classical VB wave functions on molecules such as NNO,262,263

NO2,
264,265 ClO2,

266 N2O2,
267 linear N5

+ cation,268,269 1,3-
dipoles,266,270 cyclobutadiyl diradicals,271 cyclopenta-fused
naphthalenes and fluoranthenes,272 and many others. Here we
will describe two applicatory examples in detail.
3.7.1. Ground States of S2N2 and S4

2+. S2N2 is an
intriguing molecule. As a four-membered ring with six electrons
in the π-system, it satisfies the generally accepted criteria for
aromaticity: electron count following H€uckel’s 4n + 2 rule,
stability, planarity with uniform bond lengths, and negative
nucleus-independent chemical shift due to the π-electrons.273

However, its aromatic stabilization energy was found to be quite
small or altogether absent, in the range of �0.7 to +6.5 kcal/
mol, depending on the reactions that are used for such
estimations.273 On the other hand, the closed shell character
(in principle associated with aromaticity) of this molecule has
been questioned by some authors who interpreted their theo-
retical results in terms of significant singlet diradical char-
acter.274�276 Thus, Gerratt et al. described S2N2 as a unique
predominant Lewis structure, 11 (Scheme 11), with the
radical sites on the S atoms, which bear a substantial positive
charge, while the N atoms bear a complementary negative
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charge.274,275 However, it might be argued that the semidelo-
calized nature of some of the orbitals involved in the VB wave
function preclude the nonambiguous interpretation of the
results in terms of weighted VB structures. A different assess-
ment of the radical sites was proposed by Harcourt et al.,277,278

who computed the weights of the complete set of VB structures,
11�16 in Scheme 11, by a nearly classical ab initio VB method
using strictly local AOs in the STO-6G basis set. On the basis
of these calculations, Harcourt proposed structure 12 to be the
major one, with the radical sites on the N atoms, but the
calculations, carried out in a minimal basis set, were not really
comparable to Gerratt’s calculations, which used larger
basis sets.
To settle the question, Harcourt and Klap€otke279 repeated the

VB calculation in a double-ζ basis set on S2N2 and on the
isoelectronic S4

2+ molecule. These calculations are close to the
classical type, i.e., involving all relevant covalent and ionic VB
structures, constructed with orbitals defined as primarily one-
centered AOs (however not fully localized in this case, as a stricto
sensu “classical VB” calculation would imply). For both mol-
ecules, the VB description of the six-electron four-orbital
π-system requires a set of ten linearly independent VB structures,
which have all been included in the calculations. The most
important of these structures, 11�16 for S2N2 and 17�22 for
S4

2+, are shown in Scheme 11. The remaining ones are practically
negligible, with calculated weights smaller than 0.02, and are not
shown in Scheme 11.
Only the valence electrons and orbitals of the π-system were

treated at the VB level. The σ-electrons and inner-shell
π-electrons were accommodated in Hartree�Fock SCF MOs.
The VB calculations were performed in Dunning’s D95 double-
ζ basis set using geometries optimized in the density functional
framework at the MPW1PW91/cc-pVTZ level. The weights of
the VB structures were calculated by means of the Chirgwin�
Coulson137 and L€owdin138 formulas, both methods displaying
excellent agreement in all cases.
The calculated weights are displayed in Scheme 11. It can be

seen that S2N2 has a strong diradical character, with a cumulated
weight of 0.53 for the diradical structures 11 and 12. However,
structure 12 is clearly the major one, with a weight of 0.47,
indicating that the radical sites are on the nitrogen atoms rather

than on the sulfur atoms. This result is in agreement with an
earlier classical VB calculation in a minimal basis set,277,278 but is
at variance with Gerratt’s interpretation based on the spin-
coupled method, in which the radical sites are rather viewed on
the sulfur atoms. However, since neither Gerratt’s nor Har-
court�Klap€otke’s calculations deal with purely localized AOs,
the question may be considered as still open-ended.
The calculated structure weights for S4

2+ (structures 17�22 in
Scheme 11) bear some resemblance to those of S2N2, as the
diradical structures (17, 18) are once again predominant, with a
cumulated weight of 0.46�0.52 according to the weight defini-
tion. By contrast, the structures displaying covalent bonds
(19�22) have smaller weights, 0.12 each. The calculated weights
were found to be in close accord with those obtained from single-
ζ STO-6G calculations.280,281 This predominance of diradical
structures for both molecules is truly remarkable. In the S2N2

case, it can be explained by the fact that 12 is the only VB
structure that bears no formal charge. In the S4

2+ case, all VB
structures have two cationic sites, but the distance between these
sites is maximized in the diradical structures 17 and 18. Thus, it
seems that the criteria of atomic neutrality or minimal repulsion
between formal charges are more important than the presence
or absence of π-bonds to rule the VB content of these two
molecules.
For the sake of simplifying the six-structure description of these

molecules, Harcourt and Klap€otke proposed a two-structure
description in terms of so-called “increased valence” structures,279

aimed at summarizing resonance between the 11�16 structures in
S2N2 or the 17�22 structures in S4

2+.
3.7.2. σ- and π-Aromatic Dianion Al4

2�. The Al4
2�

dianion has a D4h symmetric structure and possesses two
delocalized π-electrons, thus satifying the geometric criterion
and 4n + 2 electron-count rule for aromaticity. As such, its
π-system is isoelectronic with that of the aromatic cyclobutadiene
dication, C4H4

2+. However, Al4
2� was judged on the basis of

its magnetic properties to possess double (σ + π) aromatic
character. This interpretation prompted Havenith and van
Lenthe282 to perform ab initio VB calculations on the ground
state of Al4

2� using the 6-31G** basis set. The geometry
optimization was performed at the CASSCF(2,4) level, and
two definitions of the orbitals were used: semidelocalized, in the
SCVB spirit, and strictly atom-centered. Focusing on the latter
calculations, we note that the π- and σ-systems were treated
separately: in the π-VB calculation, the σ-system is treated as a
Hartree�Fock core, and the situation is reversed in the σ-VB
calculations.
Like S2N2 or S4

2+ above, the π-system of Al4
2� involves, with

neglect of ionic structures, a set of six covalent VB structures
(23�28) having a covalent bond between adjacent atoms or a
long bond along a diagonal and hence a diradicaloid character.

Scheme 11. Weights of the VB Structures for S2N2 and S4
2+

Using a Double-ζ Basis Seta

a Plain characters: Chirgwin-Coulson definition. Italics: L€owdin definition.

Scheme 12. Weights of the Main π-VB Structures for Al4
2�

Calculated with the Chirgwin�Coulson Definition in the
6-31G** Basis Set

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-020.png&w=240&h=160
http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-021.png&w=209&h=58
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The VB structures are shown in Scheme 12, along with their
weights as calculated by the Chirgwin�Coulson formula, eq 8.
Remarkably, one can see an amazing similarity with the structure
weights in S4

2+, as calculated by Harcourt and Klap€otke, with a
clear predominance of the two diradicaloid structures (23, 24),
which together account for almost 50% of the ground electronic
state.
While the electronic structure of the π-system is in conformity

with expectations, that of theσ-frame is truly remarkable. Different
spin-coupling schemes were tried to address the plausibility of the
different possible bonding modes of the tangential and radial
hybrids. The best couplingmode, which combines low energy and
simplicity, is illustrated in Scheme 13. It consists of two separate
σ-systems each possessing two electrons, one built from the radial
p-orbitals (Scheme 13a), the other from the tangential p-orbitals
(Scheme 13b), with the remaining eight valence electrons being
accommodated in doubly occupied 2s AOs. For each of these two
subsystems, six VB structures can be constructed, leading to a total
of 36 VB structures for the σ-frame. As the two sets of p-orbitals
do not overlap much, the two subsystems can be considered
as two independent two-electron delocalized systems, both of
them complying with the 4n + 2 aromaticity rule. Thus, some
significant σ-aromatic stabilization is expected. It follows that
Al4

2� can be schematically described as a combination of three
intricate aromatic rings, all of them being of the aromatic two-
electron four-center type, thus explaining the stability of this
dianion and its magnetic properties showing double (σ + π)
aromatic character.

4. ALGORITHM ADVANCES IN AB INITIO VB METHODS

4.1. VB Wave Function and Hamiltonian Matrix
There are twoways of evaluating theHamiltonianmatrix elements

and overlaps betweenVB structures (eqs 6 and 7 in section 2). In the
first, by expanding the spin functionΘK in terms of elementary spin
products, attaching the spatial factorΩ0, and antisymmetrizing, a VB
function is expressed in terms of 2m determinants:

ΦK ¼ ∑
k
dKkDk ð93Þ

The Hamiltonian matrix elements, eq 6, become sums of
contributions from all pairs of determinants, and these may be

evaluated by
ÆDkjHjDλæ ¼ ∑

r, s
hkλrs DðSkλrs Þ þ ∑

r < u, s < t
ðgkλrs, ut � gkλrs, tuÞDðSkλrs, utÞ

ð94Þ
where hrs

kλ and grs,ut
kλ are one- and two-electron integrals, respec-

tively, defined as
hkλrs ¼ Ækrjhjλsæ and gkλrs, ut ¼ Ækrksjgjλuλtæ ð95Þ

andD(Srs
kλ) andD(Srs,ut

kλ ) are the first- and second-order cofactors
of the overlap matrix between the two VB determinants,
respectively.

The algorithm of evaluating cofactors for determinants of
nonorthogonal orbitals was first obtained by L€owdin283 and
further developed by Prosser and Hagstrom.284 The L€owdin
rules were widely used for VB calculations long ago byMatsen,285

Simonetta,286 and Balint-Kurti287 with their co-workers. This
algorithm has been further improved by van Lenthe and co-
workers,140 especially for the singular overlap matrix. Roughly
speaking, the computational costs are of order N3 for the first-
order and N4 for the second-order cofactors. As such, the scaling
of computing a Hamiltonian matrix element between determi-
nants is N4, and thus, it scales as KN4 for a Hamiltonian matrix
element between VB structures, where K is the number of
determinant pairs for a VB structure.

The second method is to use symmetric group theory, as the
spin function ΘK forms irreducible representation of the sym-
metric group SN. This method may be regarded as another
application of the spin-free approach of Matsen288 and is
discussed below.

4.2. Orbital Optimization in the VBSCF Procedure
As mentioned above, the computational cost for the Hamilto-

nian matrix is O(KN4) and is not too high when the studied
molecules contain only a few covalent bonds. The computation-
intensive step in VB calculations is, in fact, the optimization
of the orbitals. Apparently, the VBSCF procedure is identical
to the minimization of its corresponding expectation energy,
which leads to SCF equations. The latter is reminiscent of the
much familiar MO-based MCSCF equations, but contains the
third-order cofactors of determinants.289,290 Though the SCF
equations may be solved iteratively essentially in the same
manner as the MCSCF equations, it is evident that the com-
putational cost runs high due to the six-index third-order co-
factors. A more practical approach is to find such a stationary
point on the energy surface by direct search methods, instead
of attempting to solve the SCF equation. One widely used
method is the super-CI method,141 which is based on the
generalized Brillouin theorem.291 In the super-CI method,
the wave function is expressed as a linear combination of the
approximate ground-state wave function and all its singlet
excitations, and then the new orbital coefficients are updated
by the CI coefficients for every new iteration step. An alter-
native way is to use Newton�Raphson (NR)-type methods,
for which energy gradients are critical, where the first-order
energy gradients were obtained by evaluating the Hamiltonian
matrix elements between the VB wave function and its cor-
responding single excitations, and the Hessian matrix is ob-
tained approximately.141

Since in both methods the energy term is expressed with VB
orbitals, computations require two-electron integral transformation
from the basis functions to the VB orbitals for each iteration. This
raises the demands for both CPU time and storage space. Clearly,

Scheme 13. Schematic Representation of the Spin-Coupling
Mode for the σ-Frame of Al4

2� a

aKey: (a) In one of the two-electron four-center systems, two
electrons are shared by four radial p-orbitals. (b) In the other two-
electron four-center system, two electrons are shared by four tangential
p-orbitals.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-022.jpg&w=169&h=86
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the high-order scaling of computational cost is a hindrance to the
further development of ab initio VB theory.

4.3. Spin-Free Form of VB Theory
The conventional determinant method encounters a serious

difficulty when the number of covalent bonds of the studied
molecule is not small. The length of the expansions and the need
for repeated evaluation of determinantal cofactors lead to very
heavy computational cost. An alternative approach is to use the
spin-free formulation288 of many-electron problems by using a
project operator of symmetric group SN.

In spin-free quantum chemistry, the Hamiltonian operator
is spin-free, and thus, its matrix elements are determined
only by the spatial part of the wave function. Using the
symmetric group approach, the form of the spatial function
may be taken as98,292,293

ΦK ¼ NKe
½λ�
r1ΩK ð96Þ

where NK is a normalization factor, ers
[λ] is the standard

projection operator of the symmetric group, and ΩK is the
orbital product corresponding to the given K-structure. ΦK

is called bonded tableau (BT) function in the BTUGA.98,293

It can be seen from eq 96 that a VB function is characterized
by the orbital product, i.e., the ordering of occupied orbitals.
In convention, in this review, we assume that ΩK = k1(1)
k2(2) ... kN(N) andΩL = l1(1) l2(2) ... lN(N), where (k1, k1, ..., kN)
and (l1, l1, ..., lN) are taken from orbital set {ϕi}. With the
spin-free form, eq 96, the Hamiltonian and overlap matrix
elements, eqs 6 and 7, are written as98,292,293

HKL ¼ ÆΦK jHjΦLæ ¼ ∑
P ∈ SN

D½λ�
11ðPÞÆΩK jHPjΩLæ ð97Þ

and

MKL ¼ ÆΦK jΦLæ ¼ ∑
P ∈ SN

D½λ�
11ðPÞÆΩK jPjΩLæ ð98Þ

where Drs
[λ](P) are the irreducible representation matrix

elements, which have been well discussed98,292,293 and are
easily determined. It is worthwhile to emphasize that eqs 97
and 98 are the unique formulas of the matrix elements in
the spin-free approach if HLSP functions are adopted, even
though one can take some other forms of VB functions. For
example, it is possible to construct VB functions by the
Young operator,288 but the forms of the matrix elements are
identical to eqs 97 and 98.294

Different from the above method, in which the first diagonal
element of the irreducible representationmatrix of the symmetric
group is used for constructing HLSP functions, Gallup and co-
workers developed another spin-free VB method, called the
tableau function approach,148 by using the last element of the
irreducible representation. The method leads to rather efficient
computational procedures. However, this tableau function is not
equivalent to HLSP functions.

Both eqs 97 and 98 involveN! terms of all permutations of SN,
which is similar to a determinant expansion or a permanent
expansion, except for different coefficients. If VB orbitals are
orthogonal, only a few terms are nonzero andmake contributions
to the matrix elements,293 and consequently, the matrix elements
are conveniently obtained. However, the use of nonorthogonal
orbitals is one of the most important characteristics of the VB
approach, and thus, allN! termsmake contributions to the matrix

elements. Obviously, it is impracticable to sum over all N! terms
by one-by-one permutations. In the next section, we will review
an approach, called the paired-permanent-determinant (PPD)
method,295 to discuss how to calculate the Hamiltonian matrix
elements as efficiently as possible, which will enable one to
implement a spin-free VB program.

4.4. Paired-Permanent-Determinant Approach
The purpose of the PPD approach is to overcome the dif-

ficulty of the determinant expansion length in the conven-
tional VB methods by applying the spin-free form of VB theory.
To do this, a direct approach is to define a spin-free VB func-
tion, eq 96, as a new function, instead of using 2m determinant
expansion.

In the PPDapproach, for anN�NmatrixA= (aij, i, j=1, 2, ...N),
a PPD function is defined as295

ppdðAÞ ¼ ∑
P ∈ SN

D½λ�
11 ðPÞa1p1a2p2 :::aN�1, pN�1aN , pN ð99Þ

where the permutation P is

P ¼ 1 2 3 4 ... N � 1 N
p1 p2 p3 p4 ... pN�1 pN

 !
ð100Þ

It can be seen from eq 99 that the definition of PPD is similar
to those of determinants and permanents, all of them containing
the sameN! terms. The difference is in the expansion coefficients.
Instead of (1 for determinant or 1 for permanent, it is the first
diagonal element of the representation matrix, D11

[λ](P), whose
value is of the form (�1)a(�1/2)b, where a and b depend on the
permutation.

The evaluation of a PPD may be performed by a recursion
formula, which is similar to Laplacian expansion for determi-
nants. A PPD of order N may be expressed in a linear combina-
tion of the product of PPDs of order 2 and their corresponding
cofactors, which is also a PPD of order N � 2. By repeating the
Laplacian expansion, an N-order PPD can be gradually reduced
to PPDs of order N � 2, N � 4, etc.

It can be shown that the overlap matrix element between two
VB functions, ΦK and ΦL, eq 98, is a PPD function, shown as

MKL ¼ ppdðSÞ ð101Þ

where S is the VB orbital overlap matrix with elements sij = Æki|ljæ
and thus can be straightforwardly calculated by the Laplacian
expansion algorithm for a PPD.

The expansion for the Hamiltonian matrix element is much
more complicated.295 The evaluation of a Hamiltonian matrix
element requires the order N� 2 and order cofactors of ppd(S).
From the computational point of view, the PPD algorithm does
not solve the so-called “N! problem”. Fortunately, in the routine
of a PPD expansion, there are many redundant sub-PPDs, and
thus, a well-designed routine can avoid the repeated evaluation of
sub-PPDs. In implementation, all required sub-PPDs may be
computed beforehand, and labeled in indices, and a PPD is
computed by collecting all sub-PPDs that are involved in the
PPD according to the indices.

It is worthwhile to point out that the expansion of PPDs is
much more demanding computationally than that of determi-
nants, and thus, in most cases the conventional determinant
algorithm for VB methods is more efficient than the PPD
algorithm. However, the advantage of the PPD algorithm will
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show up with an increasing number of covalent bonds, in which
only a few PPDs are involved in the calculation. In contrast, the
number of determinants that are involved in VB calculations goes
up steeply in the determinant algorithm with an increasing
number of covalent bonds.

The PPD approach is based on the representation theory of
the symmetric group. A similar algorithm based on the group
algebra of the symmetric group was developed by Li and
Pauncz.102 They derived the expansion expressions for the
evaluation of VB matrix elements by defining algebrants of VB
wave functions. An algebrant can be expandedwith subalgebrants
of lower orders in a successive way. The algorithm has been
implemented in VB2000.296

4.5. Direct VBSCF/BOVB Algorithm
In the conventional VBSCF or BOVB calculations, the

Hamiltonian matrix elements are expressed explicitly in the form
of orbital integrals, and thus, an integral transformation from
basis functions to VB orbitals is required for each iteration. Wu
et al. presented an algorithm for the VBSCF/BOVB calcula-
tions.297 In the algorithm, the total energy of the system and its
gradients are expressed in terms of basis functions, and thus,
integral transformation is not required, saving much computa-
tional time.

In the algorithm, a transition density matrix Pkλ connecting a
pair of Slater determinants, Dk and Dλ, is defined as

Pkλ ¼ Tkð~TλSTkÞ�1~Tλ ð102Þ

wherematricesTk andTλ are orbital coefficients that correspond
to Dk and Dλ, respectively, defined as

kiðjÞ ¼ ∑
μ
Tk
μiχμðjÞ and λiðjÞ ¼ ∑

μ
Tλ
μiχμðjÞ

ð103Þ
and S is the overlap matrix of spin�orbital basis functions. The
Hamiltonian matrix element between Slater determinants Dk

and Dλ is written as

Hkλ ¼ Mkλ ∑
μ, ν

Pkλμνhνμ þ 1
2 ∑
μ, ν, σ, λ

PkλμνP
kλ
σλðgνλ,μσ � gνλ,σμÞ

0
@

1
A
ð104Þ

The overlap matrix element between two Slater determinants,
Dk and Dλ,Mkλ, is the determinant of the orbital overlap matrix
Vkλ:

Mkλ ¼ jVkλj ¼ j~TkSTλj ð105Þ
By defining a Fock matrix Fkλ as

Fkλ ¼ h þ Gkλ ð106Þ
where h is the one-electron integral matrix and Gkλ is a matrix
whose elements are defined as

Gkλ
μνðPÞ ¼ ∑

σ, λ

Pkλσλðgμλ, νσ � gμλ, σνÞ ð107Þ

The matrix element Hkλ is written as

Hkλ ¼ 1
2
Mkλðtr Pkλh þ tr PkλFkλÞ ð108Þ

and the energy is expressed as

E ¼
∑
K,L

CKCLHKL

∑
K, L

CKCLMKL

¼
∑

K, L, k, λ
CKCLdKk d

L
λMkλðtr Pkλh þ tr PkλFkλÞ

2 ∑
K, L, k, λ

CKCLdKk d
L
λMkλ

ð109Þ

Furthermore, the energy gradients with respect to orbital
coefficients Tμi

k associated with determinant Dk are

∂E
∂Tk

μi
¼ 1

M2 ∑
K, L, λ

CKCLd
K
k d

L
λ ½MðZk

kλÞμi �HðYk
kλÞμi� ð110Þ

where

M ¼ ∑
K, L, k, λ

CKCLdKk d
L
λMkλ

H ¼ ∑
K, L, k, λ

CKCLdKk d
L
λHkλ

Yk
kλ ¼ STλðVkλÞ�1

ð111Þ

Zk
kλ ¼ ½HkλS þ Mkλð1� S~PkλÞ~Fkλ�TλðVkλÞ�1

Though the above formulas are derived tediously, the most
time-consuming part in applications is the construction of Fock
matrices Fkλ, which need O(m4) computer operations. Thus, in
one iteration the overall scaling for gradients with each pair of
determinants is O(m4), similar to that of one iteration in the HF
method. Therefore, if the number of determinant pairs (K) is not
large, the algorithm is much more efficient than the conventional
VBSCF algorithms. Another advantage is that all derived for-
mulas above are orbital-free and thus may be performed in the
integral direct mode easily, without the integral transformation
procedure. It is worthwhile to emphasize that the algorithm is
especially efficient for the BOVB method. As discussed above,
the BOVB wave function allows each structure to have its own
orbital set, and thus, the number of occupied orbitals will greatly
increase. In the current algorithm, the computational cost mainly
depends on the number of basis functions, rather than the
number of breathing orbitals. Thus, the cost of a single BOVB
iteration is almost the same as that of a VBSCF iteration.

5. CURRENT CAPABILITIES OF AB INITIO VB METHODS

With the advances in VB methods made in the past three
decades, ab initio VB theory is now capable not only of accurate
calculations of small molecules, by using BOVB and VBCI, but
also of reasonable VB calculations of medium-sized molecules,
even for transition-metal complexes. In this section, we shall
discuss the rotational barrier for the organometallic complex
(CO)4Fe(CH2dCH2) as an example of the current computa-
tional capabilities of full-electron VB calculation.

The rotational barrier of (CO)4Fe(C2H4) was computed by
VBSCF, Hartree�Fock, B3LYP, CASSCF, and CCSD methods.
Elian and Hoffman298 analyzed the rotational barrier in terms of
fragment orbital (FO) interactions between the FOs of the
Fe(CO)4 and C2H4 fragments. As discussed before,183,299 one
can actually use such FOs in a VB scheme to do FO-VB
calculations.182 Thus, the (CO)4Fe fragment possesses in the
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missing sites of the octahedron two hybrid orbitals (h1 and h2).
These two hybrid orbitals can be combined to form two localized
symmetry-adapted FOs, one being symmetric (h1 + h2) and the
other antisymmetric (h1 � h2) with respect to the horizontal
symmetry plane in the complex. These FOs can in turn couple

with the π- and π*-orbitals of ethylene and form two new bond
pairs, as shown in Scheme 14, wherein the lines connecting the
FOs signify that the corresponding electrons are singlet paired
(Rβ�βR).299 Note that the FO-VB approach imports the MO
advantage of orbital symmetry into the VB wave function.299

Scheme 14. FO-VB Diagram Using Lines To Show Bond Pairing between FOs on Fe(CO)4 and C2H4

Figure 11. (a) Optimized FOs at the EC (see Scheme 14). (b) Optimized FOs at the transition state.

Figure 10. Optimized geometries of the EC and transition state.

Table 7. Calculated Energies (au) of the Equilibrium Con-
formation (EC) and Transition State and Rotation Barriers
(ΔEq, kcal/mol) by HF, B3LYP, CASSCF, CCSD, and
VBSCF.a

method EC transition state ΔEq

HF �651.392537 �651.368292 15.2

B3LYP �655.402461 �655.386899 9.8

VBSCF(FO-VB,20st) �651.427379 �651.393932 21.0

VBSCF(OEO-VB,20st) �651.498822 �651.476816 13.8

CASSCF(4,4) �651.498808 �651.476771 13.8

CCSD �653.238957 �653.215200 14.9
aAll calculations involve Lanl2dz for Fe and 6-31G* for the other atoms.

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-023.jpg&w=343&h=130
http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-024.jpg&w=315&h=241
http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-025.jpg&w=240&h=132
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Here we present the results of VBSCF calculations using
VBSCF(FO-VB) and VBSCF(OEO-VB). The geometries of
the equilibrium conformation (EC) and transition state, shown
in Figure 10, are optimized at the B3LYP level with the same
basis set.

In the VBSCF calculations, all electrons except for the ECP
electrons of Fe are included in the VB calculations; thus, there are
totally 88 electrons in 46 VB orbitals, among which 42 are doubly
occupied, while the active shell involves four electrons in the four
FOs, (h1 + h2)(S) and (h1� h2)(A) on the Fe(CO)4 fragment
andπ(S) andπ*(A) on ethylene. All 20 VB structures that form a
complete Rumer basis for the active shell were included in the
calculation.

Table 7 shows the detailed results with various methods,
where CASSCF and CCSDmethods used the same basis set as in
the VBSCF calculation, and the geometries were optimized using
the B3LYP method with the same basis set. As can be seen, the
rotation barrier calculated by the VBSCF(FO-VB,20st) method
is 21.0 kcal/mol, much higher than the MO-based CCSD values.
On the other hand, the VBSCF(OEO-VB,20st) barrier is iden-
tical to the CASSCF(4,4) barrier, as expected.

Parts a and b of Figure 11 show the optimized FOs at the
EC and the transition state. It is seen that, as expected from the
FO-VB analysis in Scheme 14,183,299 the ethylene moiety is
bonded by the (CO)4Fe fragment by a double bond, and this
is the root cause of the substantial barrier for rotation.

This combination of reasonable accuracy and insight is already
encouraging. Better accuracy can be achieved by higher levels
of VB methods, especially VBPT2, which, as reviewed above,
is a very cheap post-VBSCF method. The new version of VBPT2
that applies the contraction technique of active space is in
progress and will hopefully provide the long sought after
powerful tool for VB studies of many problems for medium-sized
molecules.

6. CONCLUDING REMARKS

This review provides a snapshot of the current state of classical
valence bond theory, in its modern ab initio fashion, and demon-
strates that the theory is coming of age. There now exists a family
of methods which form a lineage that resembles the family of
CASSCF MO theory and its post-CASSCF levels. Thus, starting
with the VBSCF theory, which is the equivalent of CASSCF,
one can further improve the numerical results by using methods
such as BOVB, VBCI, and VBPT2, which incorporate dynamic
correlation effects and which have accuracies that converge to
CCSD orCASPT2 theories using the same basis sets. In addition,
any one of these VB methods can be combined with a solvent
model or anMM force field, as in VBPCM, VBSM, and VB/MM,
and thereby provide a method that can handle molecules and
reactions in solution and in proteins. Thus, from a quantitative
point of view, today VB theory enables the calculations of “real”
chemical problems for organic molecules, as well as molecules
that contain transition metals, and all these can be done in the
gas phase or in solution. Especially promising is the VBPT2
method, which emerges as a fast and accurate method that in the
future will be able to handle much larger systems than those
presented here.

The review describes another family of quantitative meth-
ods, which derive from the BLW approach. This method
extracts from MO- or DFT-based theories VB-type informa-
tion such as resonance energies and delocalization energies

such as hyperconjugation, etc. Thus, while the many success-
ful applications of these methods show that VB ideas are not
chained to VB calculations in a strict sense, they also demon-
strate the creative and portable nature of VB theory that
enables the two traditionally rival theories to be bridged and
get useful insight about structure and reactivity.

Indeed, the other aspect of VB theory that is emphasized
in this review is insight. Thus, despite the sophistication and
accuracy of the above VB methods, all of them rely on a compact
wave function which includes a minimal number of structures in
the VB structure set. The insight of this compact wave function
is projected by a panoramic set of applications starting from
simple bond energies, to reactivity, reactivity in solution, and all
the way to the rotational behavior of an organometallic com-
plex, (CO)4Fe(C2H4). Indeed, while well-designed VB software
is still challenging, the existing software (see the Appendix) is
sufficiently friendly to non-VB experts and offers reasonable
efficiency and lucid insight.

Finally, as the example of the rotational barrier of (CO)4Fe(C2H4)
shows, there is room for improvement, but there is also a horizon
for VB theory. Future improvement that will enable the calcula-
tions of bioinorganic species with different spin states will take VB
theory to a frontier research area.

APPENDIX: SOME AVAILABLE VB SOFTWARES

Other than the GVB method that is implemented in many
packages by now, here are brief descriptions of the main VB
softwares we are aware of andwithwhichwe have some experience
to varying degrees.

XMVB Program. The XMVB software108,109 is a general pro-
gram that is designed to perform multistructure VB calculations.
It can execute either nonorthogonal CI or nonorthogonal
MCSCF calculations with simultaneous optimization of orbitals
and coefficients of VB structures. Complete freedom is given to
the user to deal with HAOs, BDOs, or OEOs, so that calculations
of VBSCF, SCVB, BLW, BOVB, VBCI, and VBPT2 types can be
performed. Particularly, the “pure” VBmethods, VBSCF, BOVB,
VBCI, and VBPT2, described in section 2.2 are implemented as
standard methods in the package and can be easily performed by
specifying appropriate keywords in the input file. In this sense,
XMVB is a fairly user-friendly package applicable to a variety of
chemical problems. XMVB is a stand-alone program, but for
flexibility, it can be interfaced to most QM software, e.g.,
GAUSSIAN, GAMESS-US, etc. In addition, it is also feasible
to combine XMVBwith ab initioMOpackages to perform hybrid
valence bond method calculations, such as VB-DFT, VBPCM,
VBSM, etc. The parallel version of XMVB, based on themessage-
passing interface (MPI), is also available.109 XMVB can be used
as a stand-alone program that is freely available from the author
(e-mail weiwu@xmu.edu.cn, Web site http://ctc.xmu.edu.cn/
xmvb/). It has also been incorporated into GAMESS-US,300

which also includes the BLW method.

TURTLE Software. TURTLE110,111 is also designed to perform
multistructure VB calculations and can execute calculations of
the VBSCF, SCVB, BLW, or BOVB types. Currently, TURTLE
involves analytical gradients to optimize the energies of indivi-
dual VB structures or multistructure electronic states with
respect to the nuclear coordinates.301 A parallel version has been
developed and implemented using the MPI for the sake of
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making the software portable.107 TURTLE is now implemented
in the GAMESS-UK program.302

VB2000 Software.VB2000112 is an ab initio VB package that can
be used for performing nonorthogonal CI and multistructure VB
with optimized orbitals, as well as SCVB, GVB, VBSCF, and
BOVB. VB2000 can be used as a plug-in module for GAMESS-
(US)300 and Gaussian98/03303 so that some of the functional-
ities of GAMESS and Gaussian can be used for calculating VB
wave functions. GAMESS also provides an interface (option) for
access of the VB2000 module.

CRUNCH Software.CRUNCH (Computational Resource for
Understanding Chemistry) was written originally in Fortran
by Gallup and recently translated into C.304 This program can
perform multiconfiguration VB calculations with fixed orbitals,
plus a number of MO-based calculations such as RHF, ROHF,
UHF (followed by MP2), orthogonal CI, and MCSCF.

SCVB Software. The SCVB method is now included in the
MOLPRO software.305
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LIST OF ABBREVIATIONS
aNR approximate Newton�Raphson method
ARE adiabatic resonance energy
B3LYP a hybrid functional consisting of 20% Hartree�

Fock and 80% Becke88 exchange combined with
the Lee�Yang�Parr correlation functional

BDOs bond-distorted orbitals
BLW block-localized wave function method
BOVB breathing-orbital valence bond method
BT bonded tableau
BTUGA bonded tableau unitary group approach
CASPT2 complete active space second-order perturbation

theory
CASPT3 complete active space third-order perturbation

theory
CASSCF complete active space self-consistent field method
CCSD coupled cluster method with single and double

excitations
CCSD(T) coupled cluster method with single and double

excitations and a perturbative treatment of triple
excitations

CDC consistent diabatic configuration
CI configuration interaction
CISD configuration interaction with single and double

excitations
D-BOVB breathing-orbital valence bond method with delo-

calized inactive orbitals
DE delocalization energy
DE-VB/MM density-embedding VB/MM (see below for defi-

nition of VB/MM)
DFT density functional theory
ECRE extra cyclic resonance energy
EDA energy decomposition analysis
EH-MOVB effective-Hamiltonian molecular orbital valence

bond method
EVB empirical valence bond
FOs fragment orbitals
GVB generalized valence bond method
HAOs hybrid atomic orbitals
HF Hartree�Fock method
HLSP Heitler�London�Slater�Pauling-type wave

function
L-BOVB breathing-orbital valence bond method with all

orbitals strictly localized on their respective fragments
MCSCF multiconfiguration self-consistent field method
MM molecular mechanics
MOVB molecular orbital valence bond method
MP2 Møller�Plesset perturbation method of the second

order
MRCI multireference configuration interaction
MRPT2 multireference second-order perturbation method
NBO natural bond orbital
NICS nucleus-independent chemical shift
NR Newton�Raphson optimization method
OEO overlap-enhanced orbital
P product state
P* promoted excited state of the product
PCM polarizable continuum model
PPD paired-permanent-determinant approach
QM quantum mechanics
R reactant state
R* promoted excited state of the reactant
RE resonance energy
RHF restricted Hartree�Fock
SCF self-consistent field
SCRF self-consistent reaction field
SCVB spin-coupled valence bond method
SD-BOVB breathing-orbital valence bond method with delo-

calized inactive orbitals and splitting of doubly
occupied orbitals into two singly occupied and
spin-paired orbitals

SL-BOVB breathing-orbital valence bond method with all
orbitals strictly localized on their respective frag-
ments and split doubly occupied orbitals (see SD-
BOVB above)

SMx a series of universal solvation models, x = 1�8
TB through-bond interaction
TS through-space interaction
VB/MM a quantum mechanics/molecular mechanics meth-

od that combines the ab initio valence bondmethod
with molecular mechanics

http://pubs.acs.org/action/showImage?doi=10.1021/cr100228r&iName=master.img-029.jpg&w=126&h=156
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VBCI valence bond configuration interaction method
VBCIPT valence bond configuration interaction method

with an approximated perturbation estimation for
high and less important excited structures

VBCIS valence bond configuration interaction method
with single excitation

VBCISD valence bond configuration interaction method
with single and double excitation

VBDFT(s) a semiempirical valence bondmethod that incorpo-
rates the density functional theory energy of the
nonbonded reference state

VBPCM valence bond polarizable continuummodelmethod
VBPT2 valence bond second-order perturbation method
VBSCD valence bond state correlation diagram
VBSCF valence bond self-consistent field method
VBSM valence bond solvation model method
VDC variational diabatic configuration
VRE vertical resonance energy
XC exchange-correlation functionals
XMVB an ab initio nonorthogonal valence bond program
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